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Variational principle approach to short-pulse laser-plasma interactions in three dimensions
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An approach for describing the evolution of short-pulse lasers propagating through underdense plasmas is
presented. This approach is based upon the use of a variational principle. The starting point is an action integral
of the formS[a,a*,¢]=fd*x £[a,a* 1¢,d,a,d,a*,d,¢$] whose Euler-Lagrange equations recover the well-
known weakly nonlinear coupled equations for the envelope of the laser’'s vector potenitglcomplex
conjugatea*, and the plasma wave wakeséa) potential$. Substituting appropriate trial functions fara*,
and ¢ into the action and carrying out thfad®x, integration provides a reduced action integral. Approximate
equations of motion for the trial-function parametéesy., amplitudes, spot sizes, phases, centroid positions,
and radii of curvaturg valid to the degree of accuracy of the trial functions, can then be generated by treating
the parameters as a new set of dependent variables and varying the action with respect to them. Using this
approach, fully three-dimensional, nonlinear envelope equations are derived in the absence of dispersive terms.
The stability of these equations is analyzed, and the growth rates for hosing and symmetric spot-size self-
modulation, in the short-wavelength regime~w,/c) are recovered. In addition, hosing and spot-size self-
modulational instabilities for longer wavelength perturbatiok {,/c), and an asymmetric spot-size self-
modulational instability are found to occur. The relationships between the variational principle formalism, the
source-dependent-expansi@DE), and moment methods are presented. The importance of nonlinear effects is
also briefly discussed, and possible directions for future work are given.

PACS numbds): 52.40.Nk, 52.65-y

[. INTRODUCTION In this paper we extend the variational principle technique
to include the coupling between the laser, the relativistic
Studying the evolution of short-pulse high-intensity lasersmass corrections, and the plasma wave. Using the variational
as they propagate through underdense plasmas is an actigenciple, we recover the same growth rates for symmetric
area of research due to its importance to some plasma accelpot-size self-modulatiof7] and hosing/11,12. However,
erator[1] and radiation schemég], as well as for the fast- we have also identified long-wavelengdite., perturbations
ignitor fusion concepf3]. Research during the past few with k<w,/c) instabilities[18] and an asymmetric spot-size
years has resulted in the identification of numerous Ramagelf-modulation instability. In these long-wavelength insta-
forward scattering(RFS [4] related instabilities of finite bilities, the dominant nonlinear driving term is the relativistic
width laser pulses. These include conventional Raman formass correction to the quiver motion rather than the plasma
ward scatterind5,6], where the amplitude of the laser be- wave wake. Therefore, these instabilities are distinct from
comes unstable, spot-size self-modulafidr10], where the the RFS-type instabilities of Reff7,11,17, just as relativ-
spot size of the laser becomes unstable, and hd4ihd 2, istic self-phase modulation is distinct from RES9]. This
where the centroid of the laser becomes unstable. To studyistinction is important as it implies that the long-wavelength
these instabilities separately and to investigate their nonlininstabilities can occur at plasma densities between quarter
ear interplay, it is desirable to obtain differential equationscritical and critical densities while the RFS-type cannot.
for the evolution of the macroscopic quantities that charac- The variational principle approach presented here more
terize the laser beam profile, such as the amplitude, spot sizelearly parametrizes the instabilities as nonlinear oscillator
phase, radius of curvature, and centroid. There are variousouplings between the spot sizes and centroid positions of
methods for attempting to obtain such envelope equationghe laser and the plasma wave wake. This has the advantage
which include the variational methoffl3], the moment that it more clearly demonstrates that the couplings between
method [14], and the source-dependent-expansi®@DE)  the laser and wake envelope parameters are the physical
technique[15]. All of these techniques have been successmechanisms responsible for the instabilities. In addition, the
fully used to study relativistic self-focusin§l3,15-17,  variational principle seems to be more easily extended to
where the laser nonlinearly interacts with the plasma solelynclude all of the fluid nonlinearities; it leads naturally to
through relativistic mass corrections to the quiver motion.constants of the motion, and it provides for the use of many
However, a laser can also nonlinearly interact with a plasmaf the analytic techniques possible with the variational cal-
through its plasma wave wake. In this case, RFS-type instazulus [20]. It is also worth mentioning that the variational
bilities can occuf4]. Of the above methods, only the SDE approach described here can be extended to other scattering
technique has been used to self-consistently include the eprocesses such as forward Brillouin scattering.
fects of the wake on finite width pulses. The SDE technique The outline of this paper is as follows. In Sec. Il we
led to growth rates for spot-size self-modulat{@h and hos-  describe and outline the variational approach. In addition, to
ing [11] in uniform plasmas. set the stage for the stability analysis, an equilibrium or
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zeroth-order solution is obtained. In Sec. Il the stability of+k(2) [16]. Upon switching to the potentiap= sn—|a|?/4,

the zeroth-order solution is analyzed. Previously known inmaking the envelope approximatiena<kya, noting thata
stabilities are recovered, and unique physical regimes arg describable by a single scalar, and dropping derivatives of
predicted. In addition, a totally different three-dimensional|a|? as slow, we arrive at the equations

asymmetric spot size self-modulation instability is derived.

In Sec. IV the relationship between the variational principle ) 2 4 k(z) ’ s
approach, the SDE, and the moment method is discussed. VL—Z&MT—ZWOE_*' 1-—3]dy~(ko—wp)|a
Last, in Sec. V, possible directions for future work are given. 0

These include keeping the dispersive terms, using higher or- =(1—-¢)a, ©)
der or even the full set of nonlinearities, examining the cou-

pling between the instabilities, using more judicious trial 92 |a|?

functions, linearizing about more complicated zeroth-order (a_¢2+1 b= (4)

solutions, and including the effects of plasma channels.

If the choicewg=Kk, is made, so that we are using the tradi-
Il. VARIATIONAL PRINCIPLE METHOD tional light-frame variables, we arrive at the well known set
of coupled differential equations for short-pulse laser plasma

In the variational approach, a system of partial dlﬁerem'almteractmns in the weakly relativistic regime,

equations is recast in terms of Hamilton’s principle—that an

action integral,S= [d*x £, is stationary with respect to in- 2 g

dependent, first-order variations of the dependent variables. (V2 -2 —2ikg—|a=(1-¢)a, (5)
Once the exact Lagrangian densityfor the system is found, dpat ar

an approximate description arises when trial functions with

descriptive parameters that depend upgy) are substituted 7 1l p= |a|? 6
into the action, and the integrations across the transverse Ea ¢= 4 ©

coordinates are explicitly performed. This yields a reduced

action principle with only(i,7) as the independent variables. We next apply the variational principle approach outlined

In this reduced form of the action integral, the parameters oibove to these model equations. The action integral for this

the trial function represent another set of dependent variset of equations is

ables. Varying the action with respect to the new dependent

variables yields a set of approximate differential equations

for the parameters. The accuracy of this set of equations is S:f dx,dydr

determined by the form of the trial function, which can be

made arbitrarily accurate by choosing a complete set of spe-

cial functions with independent amplitudes. +
We now motivate the model set of equations for weakly

relativistic short pulse laser plasma interactions. We start

with the two coupled equations for the density perturbation —2(9,$)*+2¢%— (¢~ 1-k3+ wd)|al?|. (7)

and normalized vector potential, valid in the weakly relativ-

istic regime,|a)?<1:

V,a-V,a*—iky(ad,a* —a*d,a)

2

1-— (dya)(d4a*)—(dyad,a* +d,a*d.a)
0

It can be readily verified that our starting equations are the
n result of varying the action with respect & a*, and ¢.
a= 47-chL——w§—é From now on, without loss of generality, we choosg
NoY =ky, wherein Eqs(5) and (6) are the equations of motion.
Bk We also drop the mixed partial derivative term, i.e., the so-
1+ on— - a, (1) called dispersive or nonparaxial term, in the equationafor
This term is less important than the others for certain re-
2 gimes of interest. Neglecting (ivhenwy=kg) results in con-
Sn= 02V2| | 2) servation of power, which simplifies the analysis greatly.
However, these simplifications preclude seeing effects due to
traditional one-dimensiondflD) Raman forward scattering
wheresn=(n—ng)/ng. Then, we normalize all time dimen- [4-g], in which power is not conserved. We will address the
sions tow, *, space dimensions tg, *=c/w;,, and make the  consequences of the dispersive term in the context of the
substitutiona— a(x,t) exdi(wet—kox)] with the goal of sepa- variational approach in a forthcoming publication.
rating off the fastest time scale. Following this, we make a We choose the following trial functions far and ¢:
coordinate transformation to the variableg=fzk,/wo—t, 7
=z). If the transformation was made witho=k,, we a=A(y, 7)ex " IXaglky(4:7)7a
would be mathematically transforming to a set of copropa- ~2
gating coordinates at the speed of light. This is the usual ><exr< [1-iay(y, T)] )
choice in the literature. However, allowing,, andk, to be X ¢// 7)?
arbitrary as shown, allows for a mathematical description of
the envelope in terms of coordinates comoving at the linear
group velocity of the pulsevy where vy=Kkq/wo, w(2)=1

(92
2v2
(W ¢

(92
t2+w

d

: Va
XEX[{—[l—Iay(l/l,T)]W), (8
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%2 V2 sizes and centroids fap are the same as the spot sizes and
¢ ¢ . .
7+ 7/, (9 centroids fora. However, in order to properly allow for the
Wyg($h,7)° Wyg(th,7) : ; o
self-consistent evolution of the plasma wave wake, it is nec-
whereX,=x—Xa(#,7), Va=y—Ya(#h,7), Xg=X—X4(4,7),  €ssary to make the more general assumption, and allow the
Vs=Y—Yg(#,7), and the amplitudé is a complex ampli- parameters to be different. If one did assume that the cen-
tude such that\(y, 7) = /g( W, 7)eX¥ ) Each of the param- troids and the spot sizes were the same for the two potentials,
eters has a well defined interpretation, evg, represents the one would immediately arrive at a particular regime of the
spot sizep is related to the radius of curvature, represents  instabilities discussed later in this paper, i.e., the long-
the centroid position fom, andx, represents the centroid wavelength regimes. This point clearly indicates that these
position for ¢, etc. The trial function foa is the same func- regimes are distinct.
tion used in the SDE approach by Sprangteal. [11]. The We now insert these trial functions into the action integral
form of the trial function for¢ is chosen so as to agree with and perform thd' d?x, integration—which yields the follow-

the fact that in the absence of thlederivative term in the ing reduced actiorfalgebraic details are given in Appendix
equation for the wake, the scalar potential is givenday A):
=|a|?/4. It is tempting on this basis to assume that the spot

d=D(,T)exp—2| —

2 2 2 2 2 2
ki (1+af) (1+a)) w @ w. e 1
X y X y xa X ya y
= —+ =+ + — - - — +— + =
S fd¢d7' P 2 2 2W)2(a 2W§a ko((?TX anTXa ky(?Tya) Pko 4 (97. W_2_Xa 4 (97_ \Wi—a 2(P
(Xa_X</>)2 (ya_yz,b)z ”
W, W, PP exg —2
D) p[ (Weat Wyy)  (WyqtWy,) _(Wwww(a o2+ X2 0w w ))
X$Ty 2\/(W>2<a+W>2<¢)(W§a+W32/¢) 2 b 4 N xpTly ¢
2 3 [w w w. w
2| Zyo 2 x¢ 2 2| o 2 x¢ 2
_T(awwx¢)(a¢wy¢)—§® (W_w(ﬁwwxd)) +W—y¢((3’¢Wy¢,) -® (W_W(&'//X¢) +W—y¢((9¢y¢)) . (10)

We have thus reduced the infinite degrees of freedom fromi theariable to 15 degrees of freedom, i, @, x, ay, ay, Ky,
Ky, Wya, Wya, Wy, Wyé, Xa,s Ya, X¢ andy, . Varying the action with respect tg a,, ay, k,, andk, yields the following
equations: fordy,

d,P=0 (power conservation

for day,
ko
aX: - Z a7'(W)2(a)1
for day,
0
ay=— Z&T(Wsa),
for 6k,
kX: - kOé’TXa )
and for &k, ,
ky: - kol?Tya . (11)

We can use these equations to elimingtex,, ay, k,, andk, from the Lagrangian sincg is an ignorable coordinate, and
the other equations are generated by variations of the action with respect to the quadratic terms for the particuld2driable
Dropping the ignorable coordinatg also requires thaP be henceforth treated explicitly as a constant of the motion.
Eliminating these variables yields the following simplified form of the Lagrangian:
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1 1 k3 Wi Wy D2
—p|= _20 2 2 2 29| 1 WrxaWys®™
L P[z(—fwxa+—fwya g [(0Wya)*+ (9, 0y) >+ 4(0,%2)° +4(0,y2)] [+ =
(Xa_xgb)z (ya_yzj))z
WX¢Wy¢CDPEXF{—2 (w2 Y ) (wz 2 ) 5 5
Wy s W. dy (D b
_ _ 2xa 2x¢ . ya yé { ><¢2 yd)(é,.ﬂ))z_’_ w(4 )éw(Wx¢Wy¢)+T(%Wx(/))(%wy(b)
2\/(Wxa+wx¢)(wya+wy¢)
3 w w W W
+—q>2(iﬁaw 24 X 5,w 2)+c1>2—y¢ax 24 X 2” 12
3 Wx¢( W) Wy¢( oWy o) WX¢( wXp) Wy¢( W) (12)

Variation of this Lagrangian with respect to the remainingusing the self-focusing beam as the zeroth-order solution.
parameters yields the desired set of differential equations fardowever, we restrict our attention to those solutions where
their evolution. These equations can then be used to studfe self-focusing occurs on a much slower time scale than the
the stability of the beam profile. The full set of equations iseffects due to the plasma wake, and neglect all derivatives of
given in Appendix B the zeroth-order solution. This approximation becomes exact

when P/P.;=1, where the beam is matched, and will be
approximately valid whei®/P,;; deviates from 1, so long as
Il. EQUILIBRIUM SOLUTION: the focusing occurs on a slower time scale than the growth of
SYMMETRIC SELF-FOCUSING the instabilities inr.
. ) - o ) The number of algebraic manipulations needed to perform

Next, with a perturbative stability analysis in mind, We the |inearization can be minimized by carrying out the per-
choose a zeroth-order equilibrium solution to linearize aboutyrpation expansion in the Lagrangian. This is done by ex-
The simplest one is a symmetric laser that does not evolve iganding it to second order in the perturbation parameter.
¢ (e, 3,=0). In particular, we set,,=Wy,=Wa, Wxs  This quadratic Lagrangian, when varied with respect to the
=Wy4,=Ww,, with all centroids set to 0. Under these condi- first-order quantities, yields the linearized equatiditise
tions, it is straightforward to show that the equations in Ap-first-order terms merely reproduce the zeroth-order equations
pendix B reduce to of motion, and can be dropped, using Hamilton’s pringiple

This process is also useful in that additional insight into the
linearized system can be gained by knowing its Lagrangian.

P _A 2 4 P It is convenient to define the variables
Wy=W,, @P= 4w§_ 7 ITWq kgwg(l 32)—0.
(13
Wiy a1 + W Wy 1+ W.

- N W,= xal2 yal, 4)5 x¢12 y(/>1, (14)
Alternatively, one could make the substitution that=w,
for both a and ¢ directly into the reduced Lagrangian and
vary with respect tav,, wy, and®. Equationg13) describe
symmetric self-focusing, where there is no coupling to the Aw.= Wxa1~Wya1 AW, = Wxgp1 ™~ Wyga (15)
plasma wave wake, and thus godependence. From them, é 2 ’ ¢ 2 '

we obtain the well known critical threshold for self-focusing,

P/Pgy=a5w2/32 [13,15,16. For P=P.;, we have a

matched, stationary beam profile, i, remains constant if The quadratic Lagrangian can then be writtafyebraic de-
the initial conditiond,w,=0 is applied. tails given in Appendix ¢

IV. STABILITY ANALYSIS L= Lhost Lsmod: (16)

In this section we examine the stability of the symmetric
self-focusing solution. We do so by linearizing the equationavhere

o 16P [IGWOL (9 xa) >+ (9:Ya) T+ APL(yX) >+ (94Y 41)?) an
hos Wg _4P[(Xal_x¢1)2+(yal_y¢1)2]
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and L¢mogCan be broken up as and for éwy,

Lsmod™ Lozt Lowt Esym"' Eantisymv (18) &3+ iz 3- i) }Waz _ W—S;Cpl. 29

with Xg\ P 8

w?, The first two equations can be combined to yield
—-_ Y 2_H2

Lar= =5 [(3,0)*~ ], (19 e 18P o

=— — —W ,

8|~3 v ! Wg I:)crit é

— W —(Wa+W — —

Low Wo [(dyWy)dyP1—(WatWy) D], (20) (aj+ )W, =, (30)

These two equations, along with tl#&v, equation, are the
symmetric envelope self-modulation equations. However,
Eqs(28) and(29) are now decoupled from E¢30), so sym-
(21) metric spot-size self-modulation can be completely described
by Egs. (28 and (29). This implies that the instability is
driven by a coupling betweeh; andw, . The spot size of
is not directly involved in the feedback loop for this instabil-
ity, and is simply determined by the evolution of, .
Next, we consider variations to th&,,, part of the La-

32]5 2 7 \2 D2
£sym: - V{XR(&TWQ) —(3=P)wjy
0
+2P[(9,W,)2—W5]},

325 2 2 2B 2
Eantisym: - wa {XR(&TAWa) —3Aw, + P[(é’://AW¢>)
0

2
— AW+ 2AW4AW, ]}, (22) grangian. Varying the quadratic Lagrangian with respect to
h the spot-size differentials yields the following antisymmetric
where spot-size self-modulation equations: fAw,
Xp=Kow5/2, P=P/P;. (23 [75+11Aw,=Aw,, (31)
Notice that the linearized system naturally breaks up intaand for sw,;,
three decoupled subsystems: one for the centroids, one for
the averaged spot sizes atdand one for the antisymmetric , 3 1 P
differentials between the spot sizes in thandy directions. drt x_é AWa:g mAW(b. (32)

These subsystems represent the three normal modes of the
system: hosing, symmetric spot-size self-modulation, and an- Before we look at the properties of each subsystem, we
tisymmetric spot-size self-modulation. We now look at thenote that all of these systems have some common properties.
properties of these normal modes, and examine their stabilfhe coupled differential equations for each mode take the

ity. following general form:
We start by deriving the linearized equations for each

system. Varying the quadratic Lagrangian with respect to the aif +I'f=TI"5h, (33
centroids yields the following linearized hosing equations:
for 6%, gh+h=T5f, (34)
) P 1 P 1 whereT'; andT', are functions which are specified by the
It p S XaTp (2 X (24 zeroth-order solution, anfiand h represent arbitrary func-
R R tions of y and 7. We examine the stability of these equations
and for 643, by Fourier analyzing them, i.e., substituting behavior of the
form exgi(kr+wy)]. This is rigorously valid if we assume
aix¢1+x¢1=xa1. (25  thatI'y, I',, andI'5 are constant which is strictly true for a

matched beam. Doing so yields a linear system with secular
The equations clearly show that hosing is driven by adeterminant,
coupling between the centroids of the laser and the plasma
potential. There is also an identical pair of equationsyfor
andyd,l. Varying L¢mogWith respect to the average spot sizes

and®, yields the following equations: fow,,,

K2w?—T w?—k?+(I';—T',I'3)=0 (35)

and an eigenvector relationship=gI';/(1— w?). The con-
stantsl'y, I',, andI'5 have the propertieEl~O(1/x§), and
I',I';~O(1/x3), wherexg=kow3/2 is the Rayleigh length.
In our normalized unitsxg>1.

We first use this dispersion relation to look at the tempo-
ral growth rate vs the wave number of the general system. To

[95+1]

o+ 2Py ) 0 (26)
—_— — W = ,
! Wg I:)t:rit ¢

for 6@, analyze the growth behavior of the equations, it is necessary
to look at the dispersion relation in terms of the frequency
8 P _ 8 P _ . ) .
[2+1]| 1+ — W, l=—— W (277 and wave number in laboratoryz,) coordinates, which
W 1 3 P [ W3 P.. as S, 7 _
Wo Ferit 0 "erit amounts to transforming=w’ —k’, o=w'. We then solve
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0.012 0.012
Im[w] Im[w]
0.006 - 0.006 -
0 : ‘ 0 ‘ |
0 0.5 1 0 0.5 1
k k
FIG. 1. Hosing temporal growth rate vs wave number xgr FIG. 3. The antisymmetric spot-size self-modulation temporal
=500, P/Pgy=1. growth rate vs wave number foiz=500, P/P;=1.

for the complexw’ as a function of reak’. Figures 1-3 a positive power ok to lowest order, sincg<<1, as shown
show plots of this solution for each of the three normalin Figs. 1-3. Furthermore, in the short-wavelength regime,
modes, using?/Pi;=1,Xg=500 (ko=10,wy=10), which Kk’ is near 1, with the peak at 1. To this end, we order the
are easily obtained in experiment82—26. For example, quadratic(in g) coefficient of the dispersion relation a3.

this corresponds to a am laser, no=10"cm 3, P  We then determine the zeroth-order scaling by dominant bal-
=1.7TW, andwy=16.8um. ance. Pairing off terms, we find that the consistent scaling for

Certain common properties can be seen from these plotghe zeroth-order is when cubic and constant terms in the
As previously predicted11,12 for hosing and symmetric dispersion relation are of the same order, yielding for the
spot-size self-modulation, the growth rates are peakdd at peak k'=1)
=1. However, the dispersion relations show that it is pos-
sible to see a long-wavelength regime, as demonstrated by Lol5)\ 3 (—1+v3i)
the long-wavelengttii.e., smallk) tail shown in Figs. 1 and |72 2 ' (37)

2. This long-wavelength regime has heretofore never been

discussed, and there are reasons to believe that for hosinglit general, there exists a cutoff, wheregn=0. Setting

is the dominant one in practice, even though it has a loweg=0, we find that the cutoff occurs at
growth rate[18].

Next, we derive analytic results for this dispersion rela- I,—T,l,
tion. It is convenient to realize that the [Re] vs k' differs K'= —r.
only slightly from a straight line with slope 1, and that the !
growth rate is also very small. To this end, we writé
=k’+g, whereg is a small complex quantity such thgt
<k’, andk’ is real. Withw' written this way, the transfor-
mation to laboratory coordinates amountske g, o=k’
+g. We also note thaxg>1, and introduce a small book- I<T,T5. (39)
keeping parameter such thate~O(1/xg). Finally, defining

o?=(PIP)/x4, the secular determinant can be written as |, the long-wavelength regime, wheké~O[ €]<1, we can

derive an approximate relation betwegandk’. The domi-
4 3, 2(1,12_ 1 _ .2 _ 2 r_ .2 12
97 +29°%" +g%(k' "= 1-#"T,) = 26T, gk’ —&"T'1k nant balance withk’~O[ €] is between the largest of the

(38)

When k'’ =0, we achieve a long-wavelength regime of the
sort shown in Figs. 1 and 2. The condition for the long-
wavelength regime to occur is thus

+e3(I',—T,I'5)=0. (36)  quadratic terms and the constant term, which yields
We first derive an analytic result for the short-wavelength g=iyTk’ (40)

regime. We expect that the roots we are interested in scale as
so that in the long-wavelength regime, the dispersion relation

0.016 is a straight line with slopd'}2. This long-wavelength re-
Im[w] gime and growth rate could have been obtained immediately
by assuming that the centroids and spot sizes @ind ¢
0.008 - were the same when making the ansatz for the trial functions.

With this ansatzg7,<1, so that¢~|a|?/4—g7|a|?/4. This
shows that the long-wavelength regime of the instability is
due to relativistic mass corrections, whereas the short-

0 ‘ wavelength regime is predominantly a resonant effect caused
0 0.5 1 by density perturbations. While both regimes arise naturally
k out of this formalism, and continuously merge into each

other as a function ok’, they are due to distinctly different
FIG. 2. Symmetric spot-size self-modulation temporal growthphysical mechanisms. As mentioned earlier, the difference
rate vs wave number forg=500, P/P;=1. between the long-wavelength and short-wavelength regimes
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is analogous to the difference between relativistic self-phasehich yields
modulation and Raman forward scattering.

It is enlightening to examine the spatial temporal behavior Q:F1/3¢1/37_2/3X
of these instabilities. There are two regimes of interest in this 2
regard: the short-wavelength regime, wh@rfva(l) and
the long-wavelength regime, whe5§,< 1. We now look at
the spatial temporal properties of these regimes.

(49

3 \/3]
2’7 2

so that the lowest order exponential gain is given by the
positive real root

V3
A. The short-wavelength regime Q,eS=F%/3¢1’37—2’37. (50)
With  #5~0(1), we make the substitutions,f

=t exdiy], g=hexdiy], wheref andh are such thav,f B. The long-wavelength regime
<1, a¢/h<1_- Then, neglecting the highest-order derivative in |, {he long-wavelength regime@< 1. With this approxi-
4. we obtain mation, Eq.(34) can be inverted to yield

PZE+T,f=T5h, (41) h=T43(1-d2)f. (51)

—2id,h=T,f. (42)  Substituting this into Eq(33) gives
Differentiating Eq.(41) with respect toy, and substituting [02+T 305+ (I'1—T',I'5)]f=0. (52)

Eq. (42), we obtain . )
As noted previously, the long-wavelength regime occurs

o _ if when I'y<TI',I";. We assume that in additiod;;— 1,5
—— — 92+T,I'39%)f=0, 53
Hered,f<f andI';~O(I',I'3), so we can neglect the,f (774 al'sdy) ®3)
term. Doing so yields which yields the dispersion relation
(9,0°—iy)f=0, (44) k2= — T, 302 (54)
where y=I",I"3/2. We can now derive the lowest-order or
asymptotic spatial-temporal growth of this equation, using a
stationary phase argument. If we take a complex Laplace k=il 30, (55
transform of this equation using the exponential [ekg ) _ )
+wi)], the solution can be written in the form so that for a given reab, we get growth inz. Therefore, in
this long-wavelength regime the perturbations grow as
— ek exd(T'1I»)Y?w7]. We now use the general results derived
f:f de de(w,k) S(=0k), (45 herein to examine the properties of each of the three normal

modes separately.
where S is a noise source given by the form of the initial
conditions when taking the Laplace transforfl=i(kr C. Hosing
+wy), and D is the dispersion relation for the system,

which in this case is given by Since hosing is completely decoupled from envelope self-

modulation to lowest order, it is instructive to consider the
D=—i(K2w+y), (46)  simplest nonlinear extension of the first-order case by hold-
ing the spot size fixed, and allowing only the centroids énd
The exact form of the noise source is not important for ourto evolve in the nonlinear Lagrangian. Making these approxi-
purposes here. The dominant contribution to this integral ocmations in the reduced Lagrangian of E#9), and varying
curs wherD=0 and the argument of the exponent is station-with respect to the centroids an@ yields a nonlinear,
ary with respect tow and k. The value of this stationary coupled set of equations for hosing, which is guaranteed to
exponent gives the lowest order asymptotic spatial-temporakeduce to the linear equations implied by the quadratic La-
growth rate. Solving the dispersion relation foy substitut-  grangian. This approach has the advantage that the nonlinear
ing into the exponential, and requiring that the partial deriva-equations derived by making these variational approxima-
tive with respect tdk be equal to 0 yields tions are easier to digest than the fully nonlinear equations of
Appendix A. The nonlinear hosing equations obtained by

3= _ 2yy 4 using Eq.(12) with the aforementioned approximations are
- T (47) as follows: foréxg,,
2
or 2 E CI)(Xa—X¢) . (Xa_Xd)) -
I X+ 5 —kng ex —wZ =0, (56

(48)

for Xy
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2.2 2 - _ )
PEIyXgF Iy (D)X~ 7 W2 ex W shows a plot of this solution folP/P=1,xg=500(,

1 PP (xy—Xy) 4 (Xa—X¢)2) with eigenvector reIationshi|X¢1=xall(1—w2). Figure 1
=10,wy=10). Note that this dispersion relation shows a

=0, (57)  clear long-wavelength tail, consistent with the fact that
for 8D =I',I'3. From Eq.(37) the laboratory frame frequency is
, _(1 P 1)\¥(—1+v3i) 69
(9, )2 PGX%—(% } 9 2Pcritxé 2 ,
vré
&2¢¢+¢:2q’( W2 )+ 2 : The growth rate can then be written
(58) V3
_ 2/3
Note that we have simplified this analysis further by setting Im[g]—43\/§(a0/k0w) '

Ya=Y4=0. Linearizing these equations, or varying the qua-
dratic Lagrangian with respect to the centroids, recovers the From Eq.(40), the long-wavelength growth rate is

linearized hosing equations—Ed&4) and(25)— for 6x,1, 5 1t
P 1 P 1 9= Vp % (66
0')72.Xa1+ P_ X—zxal:? X—2X¢l, (59) erit 7R
erit R erit 2R From Eg.(50) the short-wavelength spatial-temporal gain is
for 6X 41, 13
fox8 eQres— ex;{ ( i iz) l/fl/37_2/3§ ) (67)
asz¢1+X¢1: Xal . (60) Pcrit XR 2

Before proceeding, we comment that these two equations Cal?]rom Eq.(53), the long-wavelength comoving gain is

be combined by solving Eq460) using a Green’s function as o % P
e twh= @x

. (68)

— T
Pcrit XR

v
Xg1 (¢, 7)= J_wdlﬂ' sin(¢— 4" )Xar (4", 7)., (61)

It is also worth comparing the linearized equatid@g)
and (25) to the nonlinear equation$6)—(58). Several fea-

which upon substituting into Eq58) yields tures are apparent in the nonlinear version. First, we see that
the Gaussian terms that appear in the nonlinear equations

Frg iix :iif‘/’ dy’ will provide a saturation mechanism for the instabilities as
Al P X3 P x3 ) e the centroid separation gets large. Further, since the Gaussian

damping factor evenly multiplies the frequencies in both the
Xsin(— ") xa(¢',7).  (62)  5x, and dx, equations, we expect that the wave number at
o ) ) which the instability is peaked will downshift to longer
This is identical to Eq.(5) in Ref. [11]. However, when \ayelengths as the instability saturates. Second, we see that
hosing is represented in terms of two coupled equations, Eqghe plasma wave amplitude couples to the nonlinear hosing

(24) and (25), rather than a single integral-differential equa- equations, implying that Raman forward scattering will pro-
tion, it becomes clearer that hosing results due to a couplingide a natural driver for the hosing instability.

between the centroid positions afand ¢. It is also worth
noting that equations identical in form to E§2) arise when D. Symmetric envelope self-modulation
examining the stability of an electron beam propagating in an
ion channe(27]. In this casex,, corresponds to the centroid
of the channel and, to the centroid of the electron beam. In
Ref. [27], the spatial-temporal solutions to such equation
are described in detail.

We now use the general results to derive the growth rates
for the symmetric spot-size self-modulation instability,
which is governed by Eq$28) and (29). TheI' parameters
Yor the symmetric instability are

We now look more closely at the properties of the linear- p w3 16 P
ized equations. Using the more general analysis in the form F1=—2(3— —) r,=— —0, 3=———=—.
of Egs.(33) and(34), we find that for hosing Xr Pait 8Xgr Wo Pt ©9
r,=T,= P _12 =1 (63) From Eq.(35) we find that the dispersion relation is
Pcrit XR’ .

1- =0.

P
K2w?— ( 3— )kg 2— k24 3K3

crit

Note thatl';=TI",I'; always, so that a long-wavelength re- Pcm)
gime exists for all parameters. From E83) we find that the

dispersion relation is A plot of this dispersion relation is shown in Fig. 2, for the

P 1 same parameters used for hosing. Note that we again see a
K202 — 537 w2—K2=0 (64) clear long-wavelength tail to the instability, which is similar
crit XR to what was seen for hosing. This regime has never been
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discussed for this instability. It is due to distinctly different ~ We close this section by making connection to the origi-
physical mechanisms than those that cause the shontal work of Esareyet al. [7]. If we apply the general equa-
wavelength instability, as mentioned previously. This dispertions for the short-wavelength regime, E¢41) and(42), to

sion relation is distinct from the hosing dispersion relation inthe symmetric spot-size self-modulation instability, and
that it posesses a cutoff which dependsRiR ;.. This dif-  solve Eq.(42) for w,, we can substitute the solution into Eq.
ference arises becauBg# I', andI'3# 1. Although the Fou-  (41). This gives ¢2+T'))W,=i(I',I's/2)[ ¥ .dy'W,, which

rier analysis is only strictly valid forP/P.=1, i.e., a is identical to Eq.(4) of Ref.[7], except that herd' ;=3
matched beam, it is worth examining this cutoff's depen-—P/P_;, whereas in Ref[7], [';=4—(5/2)P/P;. It ap-
dence onP/P.. From Eq.(38), the cutoff is at pears that the discrepancy is due to an algebraic error in Ref.

[7].
K = /3(1_P/Pcrit) (71)
3—-P/ IDcrit .
When P/P;=1, we have a complete long-wavelength tail  We now look at the antisymmetric envelope self-
as shown in the plot. This result predicts that wHeP.;;  modulation instability in more detail. The linearized equa-
<1, there is a cutoff which increases kb=1 asP/P.;  tions for this instability are given in Eq€31) and (32).
—0. For 1<P/P.;<3, we get an imaginary result, indicat- These equations show that the instability is driven due to a
ing that there is no cutoff at all, and a nonzero growth rate atlirect feedback between the spot sizesa@nd ¢, whereas
k' =0. This instability is thus related to self-focusing. For the symmetric spot size instability is driven due to a feed-
P/Pi>3, we again get a real cutoff—which islat—~ as  back betweenb, andw,, with w, uninvolved in the feed-
P/P.i— 3+, and asymptotes tdk' —v3 as P/Pg;— . back mechanism. This implies that these two instabilities are
This indicates that there is a growth rate which extends bephysically very different. The fact that the magnitude of the
yond k’=1 for this region of parameter space, which islongitudinal plasma oscillation couples to the symmetric
physically questionable. The Fourier analysis is valid exactlyspot-size modulation implies that this type of modulation can
when P/P.;=1, and approximately wheR/P.;#1, pro- couple directly to Raman forward scatterifif the disper-
vided that the focusing is still occurring on a much slowersive cross term was includedn fact, when the dispersive
time scale than the instability. Sin€dP,;>3 in this region  term is included in the analysis, the symmetric instability
of unphysical behavior, these unphysical results should bbecomes coupled to modulations to the power, which leads
discarded. Strictly, this dependence of the cutoffRiP;;  to the formation of a separate branch on the dispersion rela-

E. Antisymmetric envelope self-modulation

should be trusted only ne&/P;=1. tion. The asymmetric instability occurs without coupling di-
The peak temporalcomplex frequencyin the short- rectly to the magnitude ofb. It is due to a direct coupling
wavelength regime igusing Eq.(37)] between the side scattering of the plasma wake and the side

scattering of the laser field, and is a fundamentally three-
P 1\¥3(-1xv3i) | dimensional(3D) mode. The lack of a coupling to the mag-
2 :‘/Eghos (72 nitude of the plasma wave hints that this process is not
coupled to traditional forward Raman scattering. In fact,
and is exactly 2° times the hosing result. The growth rate when the dispersive term is included into our analysis, the
can then be written laser power is still conserved to first order and there is no
additional branch to the dispersion relation. However, the
Im[g]zﬁ grov_vf[h rate is modified sligh_tly ind_icating the presence qf
4 additional affects due to the dispersive term. More detail will
be given in a forthcoming paper.
From Eq. (40), the long-wavelength laboratory frame fre-  \we now apply the general stability analysis to this mode
quency is(for P/P¢;=1) to learn more about its properties. THeparameters for the
antisymmetric instability are

Ossm— (

D V2
Perit Xg

ag 2/3

o (73

!

g=|1/§X—R. (74) - _3 o 1 P - -
1_X§z1 2_X2R Pcrit’ &

From Eq.(50) the short-wavelength spatial-temporal gain is

eres— ex;{(z P _12) 1/3¢1/372/3£ | 75 From Eq.(35) we find that the dispersion relation is
Pcrit XR 2
3 1 P
which is again exactly 2 times the hosing result. From Eq. K2w?— — w?— K2+ — | 3— 5 _)ZO. (78)
(55), the long-wavelength comoving gain (for P/P ;=1 R xR crit

explicitly),
A plot of this dispersion relation is shown in Fig. 3, for the
same parameters used for hosing and symmetric spot-size
(76) self-modulation. Note that, for these parameters, we see a
cutoff, whereas hosing and symmetric spot-size modulation
As noted earlier, this is a regime which is the whole beanposessed a long-wavelength tail for the same parameters.
analog to relativistic self-phase modulation. The cutoff depends upoR/P;;, and is given by Eq(38),

w
gtwsm= ex;{ V27|,

R
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[ 1P 5S
K'=y1-35 (79 5S=fd¢drd2xl2 (%5@):0 (86)

crit

When P/P.;—3, we obtain a long-wavelength regime. If which, by the fundamental lemma of the calculus of varia-
P/P.i>3, we get an imaginary result, which indicates thattions, requires that the first functional derivative $fbe
there is no cutoff at all, and a nonzero growth ratekat equal to 0. This requirement generates the equations of mo-
=0. This implies that an instability due purely to relativistic tion of the system, i.e.,

mass effects, and a type of relativistic self-focusing instabil-

ity in which the beam focuses asymmetrically, exists at the ﬁz ﬁ_ (9_( IL ): (87)
thresholdP/P;—3 [17]. In particular, this implies that if o¢i  ddy '\ d(d;d)

the beam self-focuses in the regime B/P.;;< 3, any small . , ) ) ) . .
asymmetry will damp away exponentially, whereas if theNOW, we insert approximate trial functions into this varied
beam self-focuses whe® P ;> 3, the asymmetry will grow form of the action. Writing

exponentially. The peak tempor@omplex frequency in the ~ .

shgrt-waveleyngth rggime [ausﬁng Eq.F37)] | ’ b= bi(B(¢,7),X0), (88)

1 P 1

V3(—1+v3) where theB, are the parameters of the trial functide,g., ¢,
Jassni— (E a X_ZR 5

5 = Ohos (800 x, W, a, etc) and the~ denotes that the form ob is ap-
proximate, we have

and is identical to the hosing result. The growth rate can then

. (9~.
be written Si~>, 9¢i 5B (89)
k 9Bk
V3 [ ag |?? _ _ _ o _
Imlg]=—= ow (81 Then, upon insertion of this representation into the varied
432 kow form of the action, we find
From Eq. (40), the long-wavelength laboratory frame fre- 5S 0b
quency is(for P/Pg=3) 5S=[dyd dx — —
crit f ¥ sz: f LZ 5¢i ¢i=(~ﬁiﬁ,3]-(l,/f,7')
9=Iv3 82 X 8B;(417)

From Eq.(50) the short-wavelength spatial-temporal gain is =0, (90

p 113 V3 which means, by the fundamental lemma of the variational
eQres= exr{( 5 7) ¢1/37.2/37}, (83  calculus, that the equations of motion for the parameters are
crit XR
5S adb,
which is again identical to the hosing result. From Ezp), fdzxLz (5— ﬁ—(ﬁ') =0, (92
the long-wavelength comoving gain(@®r P/P ;=3 explic- ' i b=, Bi

itly)
where the trial functions have been inserted into the original

equations of motion, denoted b§S/d¢;. Note that each

: (84 term in the sum appearing in E(1) is not necessarily 0
anymore, since the trial function is no longer an exact solu-
tion. If a sum over a complete set of functions were chosen
V. VARIATIONAL PRINCIPLES, MOMENT METHODS, as the trial function, we would have an exact representation,
AND THE SOURCE-DEPENDENT EXPANSION and each term in the sum would equal 0. Note that we have

In this section we comment on the similarities and differ-ONe equation for each parameter, and thus have a closed

ences between the variational, moment, and SDE method8YStém of equations. .
We begin by examining the variational procedure, with an Equation(91) provides a useful calculational tool, and can
eye toward a comparison to the other methods. Consider tH€ applied directly to any system of partial differential equa-

Q w
e wsm= ex \/§X—T

R

action integral tions at the level of the equations of motion, without know-
ing the particular Lagrangiafprovided that one exisksf
S ¢i(,7,x)]=[dypdrd®x, L, (85) one knows which equations result from functionally differ-

entiating the action with respect to which dependent vari-
which is a functional of a set of fieldg;(#,7,x,). The ables. In the particular case that no Lagrangian can be found
equations of motion of the system are generated usinfpr the specific set of equations, E(1) still suggests a
Hamilton’s principle—that independent variations of the ac-general procedure for generating envelope equations. When
tion with respect to the dependent field variables vanishes tan action principle does not exist, it isually due to a few
first order. Formally, the first variation of the action may be offending terms in certain equations, for which there are
written (using the functional derivative notation of Killing- no “Frechet symmetric” term§28,29 in the other equations
beck and Colg19]): that would allow for the formulation of a varia-
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tional principle. Nevertheless, one has in mind what the Lawavelength regime which again shows the distinction be-
grangian would be if those extra terms were present, antiveen the long- and short-wavelength regimes.

thereby also knows which equations would be produced due
to variations of the action with respect to which dependent
variables. In these situations, E§.1) implies the following

procedure for generating envelope equations: temporarily |n summary, we have developed a variational approach
add in whatever terms are needed to the system of equatiofgr studying the evolution of short-pulse laser-plasma inter-
so that it is clear which equation is obtained by varying aactions. This approach yields coupled envelope equations for
particular variable, but drop those extra terms just beforeanacroscopic parameters which describe the laser and the
substituting the trial functions into E§91). A very general plasma potential. In this paper we have dropped terms aris-
exposition on the formulation of variational principles is ing from dispersion, and concentrated on the linearized ver-
given in Refs[29,30. sion of the resulting equations. The resulting stability analy-
With the variational method expressed in the form of Eq.sis predicts three types of whole beam instabilities. In the
(91, we can make a direct comparison between the variafirst, the centroid of the laser couples to the centroid of the
tional method, the moment method, and the sourceplasma potential, i.e., hosing. In the second, the average spot
dependent expansion. All of these methods require substitusize of the laser is coupled to the amplitude of the plasma
ing trial functions into linear combinations of the equationspotential, i.e., symmetric spot-size self-modulation. In the
of motion, which are then multiplied by linear combinations third, the asymmetry of the laser’s spot sizes couples to the
of the trial functions in some way, and then integrated ovelasymmetry of the plasma potential’'s spot sizes, i.e., asym-
the transverse coordinates. This is exactly the form we havmetric spot-size self-modulation. Each of these instabilities
here as well. For a Gaussian trial function, it is easy to sedas two basic regimes: a short-wavelength regime and a
that the methods are equivalent. In cylindrical coordinateslong-wavelength regime. In the short-wavelength regime, the
each method involves multiplying the equations by a Gaussplasma potential is dominated by the plasma wave wake and
ian times even powers of, and integrating over the trans- oscillates neamw,. These are the whole beam analogs of
verse coordinates. For the moment method, this is simply &FS[4,5]. The RFS regimes of hosing and symmetric spot-
definition of the moment. For the variational method, thissize self-modulation had been previously predicted. The
comes from differentiating the trial function with respect to variational calculations also predict a new asymmetric spot-
a or w, whereas in the SDE, the multiplying factor is simply size self-modulation instability. In the long-wavelength re-
represented by the Laguerre polynomials. gime, the modulations to the plasma potential are dominated
For the nonlinear Schrodinger equation, the equivalencéy the relativistic mass corrections, i.e., the ponderomotive
of the moment method and the variational method for thepotential. These regimes are the whole beam analogs to rela-
lowest order Gaussian mode was shown by Anderson aniivistic self-phase modulatiofRSPM and are distinct from
Bonnedal[13]. It can be shown that for the case of the non-the RFS regimes in the same way that RSPM is distinct from
linear Schrodinger equation, the variational method and th&FS.
source-dependent expansion are exactly equivalent for an ar- There are many directions for future work, the most ap-
bitrary number of Hermite-Gaussian modes. However, thearent of which is to keep the dispersive terms. Their impor-
envelope equations generated by each method are not idetance is already well documented. We will address how the
tical, but are linear combinations of each other. dispersive terms modify the growth rates and introduce new
The complete equivalence is not as clear when the modeéhstabilities in a future publication. For laser drivers in
equations are coupled partial differential equations, ratheplasma-based acceleration, it would be useful to include the
than a single equation, such as the nonlinear Schrodingeerms from a plasma channel. Another area of future work is
equation. However, the linearized results obtained in this pato examine the nonlinear coupling between instabilities, e.g.,
per for our system of two equations and very specific trialhosing in the presence of an existing plasma wave. Yet an-
functions agree with results obtained using the sourceether is to perturb about a different equilibrium profile, e.g.,
dependent expansidi,11]. It is worth noting that Esarey a beam with an elliptical cross section. For example, we have
et al. did not use a trial function fogp, but solved Eq.(6) already considered how the results change in slab geometry.
exactly in terms ofal?/4. In this case the growth rate for hosing is reduced by a factor
We close this section by commenting on the work of Sh-of 1~/2. One could also examine the effect of trial functions
vets and Wurtelg¢12]. In this work they considered pulses with higher-order Hermite-Gaussian modes included. An-
propagating in plasma channels in which the beam ither possibility would be to study the full set of nonlineari-
matched, i.e., the spot size does not evolve. They expanddibs. This is possible in principle by using the Lagrangians
the laser in terms of Laguerre-Gaussian modes. In this caspublished by Chen and Sudd6] or Brizaird [31]. The
no centroid position was explicitly included in the Gaussian.main difficulty in this regard is in carrying out the transverse
Therefore, hosing manifests itself as the growth of theintegrations once the form of a Gaussian-based trial function
higher-order azimuthally asymmetric Laguerre modes. Thigs inserted into the action. Towards this goal, we have al-
approach could be recovered from the variational method ifeady derived a fully nonlinear Lagrangian which is ame-
the same modal expansion was used in the trial function. Weable to the use of trial functions. Last, we point out that a
have also recovered this result using the moment methosimilar variational approach could be applied to other types
with Hermite Gaussian modes. We comment that in Ref]  of laser-plasma interactions such as the coupled forward
the relativistic mass corrections were neglected. As a resulBrillouin scattering and ponderomotive self-focusing insta-
their final dispersion relation does not give any long-bility. We have recently done this successfUli82].

VI. SUMMARY
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In this appendix we give algebraic details for obtaining
the reduced Lagrangian of EGL0). To compute the reduced
Lagrangian from the exact Lagrangian, we first isolate indi- F{ 2( ')“(51 'yg
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Xa

vidual terms in the exact Lagrangian, T W2
xa ya
ﬁﬂzﬁla‘ﬁla*, Wia Qy
:_WPkO a.x+t TaTT -
La.=—iko(ad,a* —a*d,a)=2kyImlad a*], Wxa
Lyy=—2(dy9)?, Kyd Xq+ X=Y ]
Lg2=2¢2,
L2=2aa* L. fd?(d”‘ Eexp —2 7(2 er51 P
= , - _ ——
a a2 alYa WXTa W—z—ya >
L.=—aa* ¢.

o2 m2 w2 w2
Xa  Ya  Xp Yo
>ttt
xa ya Wyg WY¢

Now, we proceed to insert the trial functiofiggs. (6) and Zcz —f dx dyéd ex;{ -2
(7)], and carry out the transverse integrations, term by term,

in the order listed. We will use the convention that an over-

bar denotes a term of the reduced Lagrangian, to distinguishhis integral can be evaluated by completing the square in
it from the exact Lagrangian. Term by term, this results in the exponent, and shifting the integration variable,

(Xa_xzf;)z (ya_yqs)z

2 2 2 2
\/(Wxa+ Wx¢)(Wya+ Wy(f))

Lm-

<2 ~2 ~4
_ X X X
Lyy= —2f d7<¢d?¢[((9¢<13)2+ 49,(®?) —5 Wy + 16@2(—4¢(0¢X¢>2+ (3, W)
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In the above, the symbal=y indicates an identical expression with the variableplaced withy, including the subscripts.
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APPENDIX B: NONLINEAR EQUATIONS OF MOTION

In this appendix we give the full set of nonlinear envelope equations obtained by varying the Lagrangian density of Eq.
(12). These are as follows: foBw,,,
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. ¢((¢¢)+(¢Y¢))+®
Wi Wyg

for 6x,,
Xa— X )2 2
2Wy yWy P (Xq— X 4)€XP —2 ( 2a 4’2) (Ya=¥s)
K252 (Wia+Wyp) (W +wy¢)
I Xat :
0 a (W)Z(a+ W)2(¢)3/2(W§a+ W)2/¢>) 12
for 8y,,

(Xa_x¢)2 4 (ya_qu)Z )
§a+w§¢> (Wyatwyy) ||
)1/2 %

2WX¢Wy¢<D(ya—y¢)ex;{ - 2( W

(W + Wy¢)3/2(Wxa+ W,

K52y a+

for x4,
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Xq—X4)2 —Vy4)?
W WX¢Wy¢P®(xa—x¢)exr{—2((\(N;+v\d;2 ) (f:/l; +)\/I\(/ﬁ2 )
al/l( (I)Zi/) (9¢X¢) _ xa X . ya y¢ :O,

Wy (Wit Wicy) (WS o+ Wy )
for oy,
(Xa=%g)®  (Ya=Yy)?
Wy Wy, PP (Y~ Y )exp{—Z(
; q)z_x¢(9 . x¢pNyd a ¢ (W§a+wi¢) (W32/a+ W32/¢) _

APPENDIX C: THE QUADRATIC LAGRANGIAN

In this appendix we give the details for obtaining the quadratic Lagrangian. This is done by expanding the reduced
Lagrangian in Eq(10) about the zeroth order equilibrium solution. We make the perturbation substitutions

O=——p+ed,,
aw? &%

Wxa:W0+8Wxali Wya:W0+ SWyal, WX¢ZWO+8WX¢1, Wy¢:WO+8Wy¢li

Xa=€Xa1: Ya=&€Ya1: XgpTEXp1, YeTEYgr-
and Taylor expand the Lagrangian to second ordex. iGollecting the second-order terms, we have,
2

16P 2004 2 214 4P 2 2 2 27, Vo 2_§2
Lo= =~ (KoWol (9:Xa1) "+ (9:Ya1) 1+ 4P[(9yX 1) "+ (¥ 91) "] = AP[(Xa1 = Xg1) "+ (Yar =Y 1) 1) = 5 [(9yP1) "= 1]
0

4P 4P
2, 4
W, [(FyWyp1+ IyWy 1) 9y P 1= (Wyar + Wy a1 +Wyp1 + Wy 1) Py ]— m{kowo[(afwxal)z‘*' ((9rWya1)2]
0

B2
—2(6— P)[Wicay T Wyag ]+ 4PWyg Wy} — W_é{3[(%Wx¢1)2+ (g Wy 1) = Wiy — Wy 1]

16P2
+2[ (I yWy 1) (IyWyg1) = Wy g1 Wy g1 1} — Wi (Wya1 = Wya)) (Wy g1 =Wy g1)-
0

Then, making a change of variables to

— _ Wxa1+Wya1 — _ Wx¢1+Wy¢1
Wam—% W=
_ Wxal_Wyal Wx¢>1_Wya¢l

Aw,= Aw,=

2 ' 2 '

we can write the quadratic Lagrangian as

Loar=— 16P k2 4 2 2 4AF') 2 2 _4AF') _ 2 _ 2
@2 W (koWol (9:Xa1) “+(9,Ya1)“1+4P[(dyXp1)“+ (dyY 41)°] [(Xa1—X41) "+ (Yar— Y1) D)
0

W(Z) 2 2 8}5 Vi YRR 32]5 2 w2 Pyl P W22
0

3P 2 2 2, % 2 2
- F{XR(HTAWa) —3Aw;+P[(d,AW,) = Awy+ 2AW AW, ]},
0

wherexg=kow2/2, P=P/P;. This can then broken up into individual pieces, as is done in(EQ—(20).
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