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Variational principle approach to short-pulse laser-plasma interactions in three dimensions

Brian J. Duda and W. B. Mori
Department of Physics and Astronomy, and Department of Electrical Engineering, University of California at Los Angeles,

Los Angeles, California 90095
~Received 8 June 1999!

An approach for describing the evolution of short-pulse lasers propagating through underdense plasmas is
presented. This approach is based upon the use of a variational principle. The starting point is an action integral
of the formS@a,a* ,f#5*d4x L@a,a* ,f,]ma,]ma* ,]mf# whose Euler-Lagrange equations recover the well-
known weakly nonlinear coupled equations for the envelope of the laser’s vector potentiala, its complex
conjugatea* , and the plasma wave wakes’~real! potentialf. Substituting appropriate trial functions fora, a* ,
andf into the action and carrying out the*d2x' integration provides a reduced action integral. Approximate
equations of motion for the trial-function parameters~e.g., amplitudes, spot sizes, phases, centroid positions,
and radii of curvature!, valid to the degree of accuracy of the trial functions, can then be generated by treating
the parameters as a new set of dependent variables and varying the action with respect to them. Using this
approach, fully three-dimensional, nonlinear envelope equations are derived in the absence of dispersive terms.
The stability of these equations is analyzed, and the growth rates for hosing and symmetric spot-size self-
modulation, in the short-wavelength regime (k;vp /c) are recovered. In addition, hosing and spot-size self-
modulational instabilities for longer wavelength perturbations (k!vp /c), and an asymmetric spot-size self-
modulational instability are found to occur. The relationships between the variational principle formalism, the
source-dependent-expansion~SDE!, and moment methods are presented. The importance of nonlinear effects is
also briefly discussed, and possible directions for future work are given.

PACS number~s!: 52.40.Nk, 52.65.2y
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I. INTRODUCTION

Studying the evolution of short-pulse high-intensity las
as they propagate through underdense plasmas is an a
area of research due to its importance to some plasma a
erator@1# and radiation schemes@2#, as well as for the fast-
ignitor fusion concept@3#. Research during the past fe
years has resulted in the identification of numerous Ram
forward scattering~RFS! @4# related instabilities of finite
width laser pulses. These include conventional Raman
ward scattering@5,6#, where the amplitude of the laser b
comes unstable, spot-size self-modulation@7–10#, where the
spot size of the laser becomes unstable, and hosing@11,12#,
where the centroid of the laser becomes unstable. To s
these instabilities separately and to investigate their non
ear interplay, it is desirable to obtain differential equatio
for the evolution of the macroscopic quantities that char
terize the laser beam profile, such as the amplitude, spot
phase, radius of curvature, and centroid. There are var
methods for attempting to obtain such envelope equatio
which include the variational method@13#, the moment
method @14#, and the source-dependent-expansion~SDE!
technique@15#. All of these techniques have been succe
fully used to study relativistic self-focusing@13,15–17#,
where the laser nonlinearly interacts with the plasma so
through relativistic mass corrections to the quiver motio
However, a laser can also nonlinearly interact with a plas
through its plasma wave wake. In this case, RFS-type in
bilities can occur@4#. Of the above methods, only the SD
technique has been used to self-consistently include the
fects of the wake on finite width pulses. The SDE techniq
led to growth rates for spot-size self-modulation@7# and hos-
ing @11# in uniform plasmas.
PRE 611063-651X/2000/61~2!/1925~15!/$15.00
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In this paper we extend the variational principle techniq
to include the coupling between the laser, the relativis
mass corrections, and the plasma wave. Using the variati
principle, we recover the same growth rates for symme
spot-size self-modulation@7# and hosing@11,12#. However,
we have also identified long-wavelength~i.e., perturbations
with k!vp /c! instabilities@18# and an asymmetric spot-siz
self-modulation instability. In these long-wavelength ins
bilities, the dominant nonlinear driving term is the relativist
mass correction to the quiver motion rather than the plas
wave wake. Therefore, these instabilities are distinct fr
the RFS-type instabilities of Refs.@7,11,12#, just as relativ-
istic self-phase modulation is distinct from RFS@19#. This
distinction is important as it implies that the long-waveleng
instabilities can occur at plasma densities between qua
critical and critical densities while the RFS-type cannot.

The variational principle approach presented here m
clearly parametrizes the instabilities as nonlinear oscilla
couplings between the spot sizes and centroid position
the laser and the plasma wave wake. This has the advan
that it more clearly demonstrates that the couplings betw
the laser and wake envelope parameters are the phy
mechanisms responsible for the instabilities. In addition,
variational principle seems to be more easily extended
include all of the fluid nonlinearities; it leads naturally
constants of the motion, and it provides for the use of ma
of the analytic techniques possible with the variational c
culus @20#. It is also worth mentioning that the variationa
approach described here can be extended to other scatt
processes such as forward Brillouin scattering.

The outline of this paper is as follows. In Sec. II w
describe and outline the variational approach. In addition
set the stage for the stability analysis, an equilibrium
1925 ©2000 The American Physical Society
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zeroth-order solution is obtained. In Sec. III the stability
the zeroth-order solution is analyzed. Previously known
stabilities are recovered, and unique physical regimes
predicted. In addition, a totally different three-dimension
asymmetric spot size self-modulation instability is derive
In Sec. IV the relationship between the variational princip
approach, the SDE, and the moment method is discus
Last, in Sec. V, possible directions for future work are give
These include keeping the dispersive terms, using highe
der or even the full set of nonlinearities, examining the co
pling between the instabilities, using more judicious tr
functions, linearizing about more complicated zeroth-or
solutions, and including the effects of plasma channels.

II. VARIATIONAL PRINCIPLE METHOD

In the variational approach, a system of partial differen
equations is recast in terms of Hamilton’s principle—that
action integral,S5*d4x L, is stationary with respect to in
dependent, first-order variations of the dependent variab
Once the exact Lagrangian densityL for the system is found
an approximate description arises when trial functions w
descriptive parameters that depend upon~c,t! are substituted
into the action, and the integrations across the transv
coordinates are explicitly performed. This yields a reduc
action principle with only~c,t! as the independent variable
In this reduced form of the action integral, the parameters
the trial function represent another set of dependent v
ables. Varying the action with respect to the new depend
variables yields a set of approximate differential equatio
for the parameters. The accuracy of this set of equation
determined by the form of the trial function, which can
made arbitrarily accurate by choosing a complete set of s
cial functions with independent amplitudes.

We now motivate the model set of equations for wea
relativistic short pulse laser plasma interactions. We s
with the two coupled equations for the density perturbat
and normalized vector potential, valid in the weakly relat
istic regime,uau2!1:

S ]2

]t22c2¹2DaW 54pcJW'52vp
2 n

n0g
aW

52vp
2S 11dn2

uau2

2 DaW , ~1!

S ]2

]t2 1vp
2D dn5c2¹2

uau2

2
, ~2!

wheredn[(n2n0)/n0 . Then, we normalize all time dimen
sions tovp

21, space dimensions tokp
21[c/vp , and make the

substitutiona→a(x,t)exp@i(v0t2k0x)# with the goal of sepa-
rating off the fastest time scale. Following this, we make
coordinate transformation to the variables (c[zk0 /v02t,t
[z). If the transformation was made withv0[k0 , we
would be mathematically transforming to a set of copro
gating coordinates at the speed of light. This is the us
choice in the literature. However, allowingv0 , andk0 to be
arbitrary as shown, allows for a mathematical description
the envelope in terms of coordinates comoving at the lin
group velocity of the pulsevg where vg5k0 /v0 , v0
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1k0
2 @16#. Upon switching to the potentialf[dn2uau2/4,

making the envelope approximation]ta!k0a, noting thataW
is describable by a single scalar, and dropping derivative
uau2 as slow, we arrive at the equations

F¹'
2 22

]2

]c]t
22ik0

]

]t
1S 12

k0
2

v0
2D ]c

22~k0
22v0

2!Ga
5~12f!a, ~3!

S ]2

]c2 11Df5
uau2

4
. ~4!

If the choicev0[k0 is made, so that we are using the trad
tional light-frame variables, we arrive at the well known s
of coupled differential equations for short-pulse laser plas
interactions in the weakly relativistic regime,

S ¹'
2 22

]2

]c]t
22ik0

]

]t Da5~12f!a, ~5!

S ]2

]c2 11Df5
uau2

4
. ~6!

We next apply the variational principle approach outlin
above to these model equations. The action integral for
set of equations is

S5E dx'dc dtF¹W 'a•¹W 'a* 2 ik0~a]ta* 2a* ]ta!

1S 12
k0

2

v0
2D ~]ca!~]ca* !2~]ca]ta* 1]ca* ]ta!

22~]cf!212f22~f212k0
21v0

2!uau2G . ~7!

It can be readily verified that our starting equations are
result of varying the action with respect toa, a* , and f.
From now on, without loss of generality, we choosev0
[k0 , wherein Eqs.~5! and ~6! are the equations of motion
We also drop the mixed partial derivative term, i.e., the
called dispersive or nonparaxial term, in the equation fora.
This term is less important than the others for certain
gimes of interest. Neglecting it~whenv0[k0! results in con-
servation of power, which simplifies the analysis great
However, these simplifications preclude seeing effects du
traditional one-dimensional~1D! Raman forward scattering
@4–6#, in which power is not conserved. We will address t
consequences of the dispersive term in the context of
variational approach in a forthcoming publication.

We choose the following trial functions fora andf:

a5A~c,t!eikx~c,t!x̃aeiky~c,t!ỹa

3expS 2@12 iax~c,t!#
x̃a

2

wxa~c,t!2D
3expS 2@12 iay~c,t!#

ỹa
2

wya~c,t!2D , ~8!
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PRE 61 1927VARIATIONAL PRINCIPLE APPROACH TO SHORT- . . .
f5F~c,t!exp22S 2
x̃f

2

wxf~c,t!2 1
ỹf

2

wyf~c,t!2D , ~9!

where x̃a[x2xa(c,t), ỹa[y2ya(c,t), x̃f[x2xf(c,t),
ỹf[y2yf(c,t), and the amplitudeA is a complex ampli-
tude such thatA(c,t)5Aj(c,t)eix(c,t). Each of the param-
eters has a well defined interpretation, e.g.,wa represents the
spot size,a is related to the radius of curvature,xa represents
the centroid position fora, and xf represents the centroi
position forf, etc. The trial function fora is the same func-
tion used in the SDE approach by Sprangleet al. @11#. The
form of the trial function forf is chosen so as to agree wi
the fact that in the absence of thec derivative term in the
equation for the wake, the scalar potential is given byf
5uau2/4. It is tempting on this basis to assume that the s
 t

sizes and centroids forf are the same as the spot sizes a
centroids fora. However, in order to properly allow for the
self-consistent evolution of the plasma wave wake, it is n
essary to make the more general assumption, and allow
parameters to be different. If one did assume that the c
troids and the spot sizes were the same for the two potent
one would immediately arrive at a particular regime of t
instabilities discussed later in this paper, i.e., the lon
wavelength regimes. This point clearly indicates that th
regimes are distinct.

We now insert these trial functions into the action integ
and perform the*d2x' integration—which yields the follow-
ing reduced action~algebraic details are given in Append
A!:
d
ble

on.
S5E dc dtF PS kx
2

2
1

ky
2

2
1

~11ax
2!

2wxa
2 1

~11ay
2!

2wya
2 2k0~]tx2kx]txa2ky]tya! D 2Pk0Fwxa

2

4
]tS ax

wxa
2 D 1

wya
2

4
]tS ay

wya
2 D G1

1

2
~P

1wxfwyfF2!2

wxfwyfFP expF22S ~xa2xf!2

~wxa
2 1wxf

2 !
1

~ya2yf!2

~wya
2 1wyf

2 ! D G
2A~wxa

2 1wxf
2 !~wya

2 1wyf
2 !

2S wxfwyf

2
~]cF!21

]c~F2!

4
]c~wxfwyf! D

2
F2

4
~]cwxf!~]cwyf!2

3

8
F2S wyf

wxf
~]cwxf!21

wxf

wyf
~]cwyf!2D2F2S wyf

wxf
~]cxf!21

wxf

wyf
~]cyf!2D G . ~10!

We have thus reduced the infinite degrees of freedom from thexW' variable to 15 degrees of freedom, i.e.,P, F, x, ax , ay , kx ,
ky , wxa, wya, wxf, wyf, xa , ya , xf , andyf . Varying the action with respect tox, ax , ay , kx , andky yields the following
equations: fordx,

]tP50 ~power conservation!,

for dax ,

ax52
k0

4
]t~wxa

2 !,

for day ,

ay52
k0

4
]t~wya

2 !,

for dkx ,

kx52k0]txa ,

and fordky ,

ky52k0]tya . ~11!

We can use these equations to eliminatex, ax , ay , kx , andky from the Lagrangian sincex is an ignorable coordinate, an
the other equations are generated by variations of the action with respect to the quadratic terms for the particular varia@21#.
Dropping the ignorable coordinatex also requires thatP be henceforth treated explicitly as a constant of the moti
Eliminating these variables yields the following simplified form of the Lagrangian:
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L5PF1

2 S 1

wxa
2 1

1

wya
2 D 2

k0
2

8
@~]twxa!

21~]twya!
214~]txa!214~]tya!2#G1

wxfwyfF2

2

2

wxfwyfFP expF22S ~xa2xf!2

~wxa
2 1wxf

2 !
1

~ya2yf!2

~wya
2 1wyf

2 ! D G
2A~wxa

2 1wxf
2 !~wya

2 1wyf
2 !

2Fwxfwyf

2
~]cF!21

]c~F2!

4
]c~wxfwyf!1

F2

4
~]cwxf!~]cwyf!

1
3

8
F2S wyf

wxf
~]cwxf!21

wxf

wyf
~]cwyf!2D1F2S wyf

wxf
~]cxf!21

wxf

wyf
~]cyf!2D G . ~12!
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Variation of this Lagrangian with respect to the remaini
parameters yields the desired set of differential equations
their evolution. These equations can then be used to s
the stability of the beam profile. The full set of equations
given in Appendix B

III. EQUILIBRIUM SOLUTION:
SYMMETRIC SELF-FOCUSING

Next, with a perturbative stability analysis in mind, w
choose a zeroth-order equilibrium solution to linearize abo
The simplest one is a symmetric laser that does not evolv
c ~i.e., ]c50!. In particular, we setwxa5wya[wa , wxf
5wyf[wf , with all centroids set to 0. Under these cond
tions, it is straightforward to show that the equations in A
pendix B reduce to

wf5wa , F5
P

4wa
2 5

A2

4
, ]t

2wa2
4

k0
2wa

3 S 12
P

32D50.

~13!

Alternatively, one could make the substitution thatwx5wy
for both a and f directly into the reduced Lagrangian an
vary with respect towa , wf , andF. Equations~13! describe
symmetric self-focusing, where there is no coupling to
plasma wave wake, and thus noc dependence. From them
we obtain the well known critical threshold for self-focusin
P/Pcrit5a0

2wa
2/32 @13,15,16#. For P5Pcrit , we have a

matched, stationary beam profile, i.e.,wa remains constant if
the initial condition]twa50 is applied.

IV. STABILITY ANALYSIS

In this section we examine the stability of the symmet
self-focusing solution. We do so by linearizing the equatio
or
dy

t.
in

-

e

s

using the self-focusing beam as the zeroth-order solut
However, we restrict our attention to those solutions wh
the self-focusing occurs on a much slower time scale than
effects due to the plasma wake, and neglect all derivative
the zeroth-order solution. This approximation becomes ex
when P/Pcrit51, where the beam is matched, and will b
approximately valid whenP/Pcrit deviates from 1, so long a
the focusing occurs on a slower time scale than the growt
the instabilities int.

The number of algebraic manipulations needed to perfo
the linearization can be minimized by carrying out the p
turbation expansion in the Lagrangian. This is done by
panding it to second order in the perturbation parame
This quadratic Lagrangian, when varied with respect to
first-order quantities, yields the linearized equations~the
first-order terms merely reproduce the zeroth-order equat
of motion, and can be dropped, using Hamilton’s principl!.
This process is also useful in that additional insight into
linearized system can be gained by knowing its Lagrang
It is convenient to define the variables

w̄a[
wxa11wya1

2
, w̄f[

wxf11wyf1

2
, ~14!

Dwa[
wxa12wya1

2
, Dwf[

wxf12wyf1

2
. ~15!

The quadratic Lagrangian can then be written~algebraic de-
tails given in Appendix C!

L5Lhos1Lsmod, ~16!

where
Lhos52
16P̃

w0
4 S k0

2w0
4@~]txa1!21~]tya1!2#14P̃@~]cxf1!21~]cyf1!2#

24P̃@~xa12xf1!21~ya12yf1!2#
D ~17!
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PRE 61 1929VARIATIONAL PRINCIPLE APPROACH TO SHORT- . . .
andLsmod can be broken up as

Lsmod5LF21LFw̄1Lsym1Lantisym, ~18!

with

LF252
w0

2

2
@~]cF1!22F1

2#, ~19!

LFw̄52
8P̃

w0
@~]cw̄f!]cF12~w̄a1w̄f!F1#, ~20!

Lsym52
32P̃

w0
4 $xR

2~]tw̄a!22~32 P̃!w̄a
2

12P̃@~]cw̄f!22w̄f
2 #%, ~21!

Lantisym52
32P̃

w0
4 $xR

2~]tDwa!223Dwa
21 P̃@~]cDwf!2

2Dwf
2 12DwfDwa#%, ~22!

where

xR[k0w0
2/2, P̃[P/Pcrit . ~23!

Notice that the linearized system naturally breaks up i
three decoupled subsystems: one for the centroids, one
the averaged spot sizes andF, and one for the antisymmetri
differentials between the spot sizes in thex andy directions.
These subsystems represent the three normal modes o
system: hosing, symmetric spot-size self-modulation, and
tisymmetric spot-size self-modulation. We now look at t
properties of these normal modes, and examine their sta
ity.

We start by deriving the linearized equations for ea
system. Varying the quadratic Lagrangian with respect to
centroids yields the following linearized hosing equatio
for dxa1 ,

]t
2xa11

P

Pcrit

1

xR
2 xa15

P

Pcrit

1

xR
2 xf1 , ~24!

and fordxf1 ,

]c
2xf11xf15xa1 . ~25!

The equations clearly show that hosing is driven by
coupling between the centroids of the laser and the pla
potential. There is also an identical pair of equations forya1

andyf1
. VaryingLsmodwith respect to the average spot siz

andF1 yields the following equations: fordw̄f ,

@]c
211#S F11

16

w0
3

P

Pcrit
w̄fD 50, ~26!

for dF1 ,

@]c
211#S F11

8

w0
3

P

Pcrit
w̄fD 52

8

w0
3

P

Pcrit
w̄a , ~27!
o
for

the
n-

il-

h
e
:

a
a

and fordw̄a ,

F]t
21

1

xR
2 S 32

P

Pcrit
D Gw̄a52

w0
3

8xR
2 F1 . ~28!

The first two equations can be combined to yield

~]c
211!F152

16

w0
3

P

Pcrit
w̄a , ~29!

~]c
211!w̄f5w̄a . ~30!

These two equations, along with thedw̄a equation, are the
symmetric envelope self-modulation equations. Howev
Eqs~28! and~29! are now decoupled from Eq.~30!, so sym-
metric spot-size self-modulation can be completely descri
by Eqs. ~28! and ~29!. This implies that the instability is
driven by a coupling betweenF1 andwa . The spot size off
is not directly involved in the feedback loop for this instab
ity, and is simply determined by the evolution ofwa .

Next, we consider variations to theLasym part of the La-
grangian. Varying the quadratic Lagrangian with respect
the spot-size differentials yields the following antisymmet
spot-size self-modulation equations: fordDwf ,

@]c
211#Dwf5Dwa , ~31!

and fordwxa1 ,

F]t
21

3

xR
2 GDwa5

1

xR
2

P

Pcrit
Dwf . ~32!

Before we look at the properties of each subsystem,
note that all of these systems have some common proper
The coupled differential equations for each mode take
following general form:

]t
2f 1G1f 5G2h, ~33!

]c
2h1h5G3f , ~34!

whereG1 and G2 are functions which are specified by th
zeroth-order solution, andf and h represent arbitrary func
tions ofc andt. We examine the stability of these equatio
by Fourier analyzing them, i.e., substituting behavior of t
form exp@i(kt1vc)#. This is rigorously valid if we assume
that G1 , G2 , andG3 are constant which is strictly true for
matched beam. Doing so yields a linear system with sec
determinant,

k2v22G1v22k21~G12G2G3!50 ~35!

and an eigenvector relationshiph5gG3 /(12v2). The con-
stantsG1 , G2 , andG3 have the propertiesG1;O(1/xR

2), and
G2G3;O(1/xR

2), wherexR5k0w0
2/2 is the Rayleigh length.

In our normalized units,xR@1.
We first use this dispersion relation to look at the temp

ral growth rate vs the wave number of the general system
analyze the growth behavior of the equations, it is necess
to look at the dispersion relation in terms of the frequen
and wave number in laboratory (z,t) coordinates, which
amounts to transformingk5v82k8, v5v8. We then solve
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1930 PRE 61BRIAN J. DUDA AND W. B. MORI
for the complexv8 as a function of realk8. Figures 1–3
show plots of this solution for each of the three norm
modes, usingP/Pcrit51, xR5500 (k0510,w0510), which
are easily obtained in experiments@22–26#. For example,
this corresponds to a 1-mm laser, n051019cm23, P
51.7 TW, andw0516.8mm.

Certain common properties can be seen from these p
As previously predicted@11,12# for hosing and symmetric
spot-size self-modulation, the growth rates are peaked ak8
51. However, the dispersion relations show that it is p
sible to see a long-wavelength regime, as demonstrate
the long-wavelength~i.e., smallk! tail shown in Figs. 1 and
2. This long-wavelength regime has heretofore never b
discussed, and there are reasons to believe that for hosi
is the dominant one in practice, even though it has a lo
growth rate@18#.

Next, we derive analytic results for this dispersion re
tion. It is convenient to realize that the Re@v8# vs k8 differs
only slightly from a straight line with slope 1, and that th
growth rate is also very small. To this end, we writev8
5k81g, whereg is a small complex quantity such thatg
!k8, andk8 is real. Withv8 written this way, the transfor-
mation to laboratory coordinates amounts tok5g, v5k8
1g. We also note thatxR@1, and introduce a small book
keeping parametere such thate;O(1/xR). Finally, defining
s2[(P/Pcrit)/xR

2, the secular determinant can be written

g412g3k81g2~k82212«2G1!22«2G1gk82«2G1k82

1«2~G12G2G3!50. ~36!

We first derive an analytic result for the short-waveleng
regime. We expect that the roots we are interested in sca

FIG. 2. Symmetric spot-size self-modulation temporal grow
rate vs wave number forxR5500, P/Pcrit51.

FIG. 1. Hosing temporal growth rate vs wave number forxR

5500, P/Pcrit51.
l

ts.

-
by

n
it
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-
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a positive power ofe to lowest order, sinceg!1, as shown
in Figs. 1–3. Furthermore, in the short-wavelength regim
k8 is near 1, with the peak at 1. To this end, we order
quadratic~in g! coefficient of the dispersion relation ase2.
We then determine the zeroth-order scaling by dominant
ance. Pairing off terms, we find that the consistent scaling
the zeroth-order is when cubic and constant terms in
dispersion relation are of the same order, yielding for
peak (k851)

g5S G2G3

2 D 1/3~216) i !

2
. ~37!

In general, there exists a cutoff, whereing50. Setting
g50, we find that the cutoff occurs at

k85AG12G2G3

G1
. ~38!

When k850, we achieve a long-wavelength regime of t
sort shown in Figs. 1 and 2. The condition for the lon
wavelength regime to occur is thus

G1<G2G3 . ~39!

In the long-wavelength regime, wherek8;O@e#!1, we can
derive an approximate relation betweeng andk8. The domi-
nant balance withk8;O@e# is between the largest of th
quadratic terms and the constant term, which yields

g5 iAG1k8 ~40!

so that in the long-wavelength regime, the dispersion rela
is a straight line with slopeG1

1/2. This long-wavelength re-
gime and growth rate could have been obtained immedia
by assuming that the centroids and spot sizes ofa and f
were the same when making the ansatz for the trial functio
With this ansatz,]c

2!1, so thatf'uau2/42]c
2 uau2/4. This

shows that the long-wavelength regime of the instability
due to relativistic mass corrections, whereas the sh
wavelength regime is predominantly a resonant effect cau
by density perturbations. While both regimes arise natura
out of this formalism, and continuously merge into ea
other as a function ofk8, they are due to distinctly differen
physical mechanisms. As mentioned earlier, the differe
between the long-wavelength and short-wavelength regi

FIG. 3. The antisymmetric spot-size self-modulation tempo
growth rate vs wave number forxR5500, P/Pcrit51.
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is analogous to the difference between relativistic self-ph
modulation and Raman forward scattering.

It is enlightening to examine the spatial temporal behav
of these instabilities. There are two regimes of interest in
regard: the short-wavelength regime, where]c

2;O(1) and
the long-wavelength regime, where]c

2!1. We now look at
the spatial temporal properties of these regimes.

A. The short-wavelength regime

With ]c
2;O(1), we make the substitutions, f

5 f̄ exp@ic#, g5h̄exp@ic#, where f̄ and h̄ are such that]c f̄

!1, ]ch̄!1. Then, neglecting the highest-order derivative
c, we obtain

]t
2 f̄ 1G1 f̄ 5G2h̄, ~41!

22i ]ch̄.G3 f̄ . ~42!

Differentiating Eq.~41! with respect toc, and substituting
Eq. ~42!, we obtain

]c]t
2 f̄ 1G1]c f̄ 5G2G3

i f̄

2
. ~43!

Here]c f̄ ! f̄ andG1;O(G2G3), so we can neglect the]c f̄
term. Doing so yields

~]c]t
22 ig! f̄ .0, ~44!

where g[G2G3/2. We can now derive the lowest-orde
asymptotic spatial-temporal growth of this equation, usin
stationary phase argument. If we take a complex Lapl
transform of this equation using the exponential exp@i(kt
1vc)#, the solution can be written in the form

f̄ 5E dv dk
eV~v,k!

D~v,k!
S~c50,k!, ~45!

where S is a noise source given by the form of the initi
conditions when taking the Laplace transform,V[ i (kt
1vc), and D is the dispersion relation for the system
which in this case is given by

D52 i ~k2v1g!, ~46!

The exact form of the noise source is not important for o
purposes here. The dominant contribution to this integral
curs whenD>0 and the argument of the exponent is statio
ary with respect tov and k. The value of this stationary
exponent gives the lowest order asymptotic spatial-temp
growth rate. Solving the dispersion relation forv, substitut-
ing into the exponential, and requiring that the partial deri
tive with respect tok be equal to 0 yields

k352S 2gc

t D ~47!

or

k52S G2G3c

t D 1/3H 1,
216 i)

2 J , ~48!
e

r
is

a
e

r
c-
-

al

-

which yields

V5G2
1/3c1/3t2/33H 2 i

3

2
,6
)

2 J ~49!

so that the lowest order exponential gain is given by
positive real root

V res5G2
1/3c1/3t2/3

)

2
. ~50!

B. The long-wavelength regime

In the long-wavelength regime,]c
2!1. With this approxi-

mation, Eq.~34! can be inverted to yield

h5G3~12]c
2 ! f . ~51!

Substituting this into Eq.~33! gives

@]t
21G2G3]c

21~G12G2G3!# f 50. ~52!

As noted previously, the long-wavelength regime occ
when G1<G2G3 . We assume that in addition,G12G2G3
!1, so that

~]t
21G2G3]c

2 ! f >0, ~53!

which yields the dispersion relation

k252G2G3v2 ~54!

or

k56 iAG2G3v, ~55!

so that for a given realv, we get growth int. Therefore, in
this long-wavelength regime the perturbations grow
exp@(G1G2)

1/2vt#. We now use the general results deriv
herein to examine the properties of each of the three nor
modes separately.

C. Hosing

Since hosing is completely decoupled from envelope s
modulation to lowest order, it is instructive to consider t
simplest nonlinear extension of the first-order case by ho
ing the spot size fixed, and allowing only the centroids andF
to evolve in the nonlinear Lagrangian. Making these appro
mations in the reduced Lagrangian of Eq.~19!, and varying
with respect to the centroids andF yields a nonlinear,
coupled set of equations for hosing, which is guaranteed
reduce to the linear equations implied by the quadratic
grangian. This approach has the advantage that the nonli
equations derived by making these variational approxim
tions are easier to digest than the fully nonlinear equation
Appendix A. The nonlinear hosing equations obtained
using Eq.~12! with the aforementioned approximations a
as follows: fordxa ,

]t
2xa1

1

2

F~xa2xf!

k0
2w2 expS 2

~xa2xf!2

w2 D50, ~56!

for dxf ,
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F2]c
2xf1]c~F2!]cxf2

1

4

PF~xa2xf!

w2 expS 2
~xa2xf!2

w2 D
50, ~57!

for dF,

]c
2F1F52FS ~]cxf!2

w2 D1

P expF2S ~xa2xf!2

w2 D G
2w2 .

~58!

Note that we have simplified this analysis further by sett
ya5yf50. Linearizing these equations, or varying the qu
dratic Lagrangian with respect to the centroids, recovers
linearized hosing equations—Eqs.~24! and~25!— for dxa1 ,

]t
2xa11

P

Pcrit

1

xR
2 xa15

P

Pcrit

1

xR
2 xf1 , ~59!

for dxf1 ,

]c
2xf11xf15xa1 . ~60!

Before proceeding, we comment that these two equations
be combined by solving Eq.~60! using a Green’s function a

xf1~c,t!5E
2`

c

dc8 sin~c2c8!xa1~c8,t!, ~61!

which upon substituting into Eq.~58! yields

]t
2xa11

P

Pcrit

1

xR
2 xa15

P

Pcrit

1

xR
2 E

2`

c

dc8

3sin~c2c8!xa1~c8,t!. ~62!

This is identical to Eq.~5! in Ref. @11#. However, when
hosing is represented in terms of two coupled equations,
~24! and ~25!, rather than a single integral-differential equ
tion, it becomes clearer that hosing results due to a coup
between the centroid positions ofa and f. It is also worth
noting that equations identical in form to Eq.~62! arise when
examining the stability of an electron beam propagating in
ion channel@27#. In this casexf corresponds to the centroi
of the channel andxa to the centroid of the electron beam.
Ref. @27#, the spatial-temporal solutions to such equatio
are described in detail.

We now look more closely at the properties of the line
ized equations. Using the more general analysis in the f
of Eqs.~33! and ~34!, we find that for hosing

G15G25
P

Pcrit

1

xR
2 , G351. ~63!

Note thatG15G2G3 always, so that a long-wavelength r
gime exists for all parameters. From Eq.~33! we find that the
dispersion relation is

k2v22
P

Pcrit

1

xR
2 v22k250 ~64!
g
-
e

an

s.

g

n

s

-
m

with eigenvector relationshipxf1
5xa1

/(12v2). Figure 1

shows a plot of this solution forP/Pcrit51, xR5500(k0
510,w0510). Note that this dispersion relation shows
clear long-wavelength tail, consistent with the fact thatG1
5G2G3 . From Eq.~37! the laboratory frame frequency is

g5S 1

2

P

Pcrit

1

xR
2 D 1/3~216) i !

2
, ~65!

The growth rate can then be written

Im@g#5
)

4A3 2
~a0 /k0w!2/3.

From Eq.~40!, the long-wavelength growth rate is

g5 iA P

Pcrit

k8

xR
. ~66!

From Eq.~50! the short-wavelength spatial-temporal gain

eVres5expF S P

Pcrit

1

xR
2 D 1/3

c1/3t2/3
)

2 G . ~67!

From Eq.~53!, the long-wavelength comoving gain is

eV twh5expFA P

Pcrit

v

xR
tG . ~68!

It is also worth comparing the linearized equations~24!
and ~25! to the nonlinear equations~56!–~58!. Several fea-
tures are apparent in the nonlinear version. First, we see
the Gaussian terms that appear in the nonlinear equat
will provide a saturation mechanism for the instabilities
the centroid separation gets large. Further, since the Gaus
damping factor evenly multiplies the frequencies in both
dxa anddxf equations, we expect that the wave number
which the instability is peaked will downshift to longe
wavelengths as the instability saturates. Second, we see
the plasma wave amplitude couples to the nonlinear hos
equations, implying that Raman forward scattering will pr
vide a natural driver for the hosing instability.

D. Symmetric envelope self-modulation

We now use the general results to derive the growth ra
for the symmetric spot-size self-modulation instabilit
which is governed by Eqs.~28! and ~29!. The G parameters
for the symmetric instability are

G15
1

xR
2 S 32

P

Pcrit
D , G252

w0
3

8xR
2 , G352

16

w0
3

P

Pcrit
.

~69!

From Eq.~35! we find that the dispersion relation is

Fk2v22S 32
P

Pcrit
D kR

2v22k213kR
2 S 12

P

Pcrit
D G50.

~70!

A plot of this dispersion relation is shown in Fig. 2, for th
same parameters used for hosing. Note that we again s
clear long-wavelength tail to the instability, which is simila
to what was seen for hosing. This regime has never b
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discussed for this instability. It is due to distinctly differe
physical mechanisms than those that cause the sh
wavelength instability, as mentioned previously. This disp
sion relation is distinct from the hosing dispersion relation
that it posesses a cutoff which depends onP/Pcrit . This dif-
ference arises becauseG1ÞG2 andG3Þ1. Although the Fou-
rier analysis is only strictly valid forP/Pc51, i.e., a
matched beam, it is worth examining this cutoff’s depe
dence onP/Pc . From Eq.~38!, the cutoff is at

k85A3
~12P/Pcrit!

32P/Pcrit
. ~71!

When P/Pcrit51, we have a complete long-wavelength t
as shown in the plot. This result predicts that whenP/Pcrit
,1, there is a cutoff which increases tok851 as P/Pcrit
→0. For 1,P/Pcrit,3, we get an imaginary result, indica
ing that there is no cutoff at all, and a nonzero growth rate
k850. This instability is thus related to self-focusing. F
P/Pcrit.3, we again get a real cutoff—which is atk8→` as
P/Pcrit→31, and asymptotes tok8→) as P/Pcrit→`.
This indicates that there is a growth rate which extends
yond k851 for this region of parameter space, which
physically questionable. The Fourier analysis is valid exac
when P/Pcrit51, and approximately whenP/PcritÞ1, pro-
vided that the focusing is still occurring on a much slow
time scale than the instability. SinceP/Pcrit.3 in this region
of unphysical behavior, these unphysical results should
discarded. Strictly, this dependence of the cutoff onP/Pcrit
should be trusted only nearP/Pcrit51.

The peak temporal~complex frequency! in the short-
wavelength regime is@using Eq.~37!#

gssm5S P

Pcrit

1

xR
2 D 1/3~216) i !

2
5A3 2ghos ~72!

and is exactly 21/3 times the hosing result. The growth ra
can then be written

Im@g#5
)

4 S a0

k0wD 2/3

. ~73!

From Eq. ~40!, the long-wavelength laboratory frame fre
quency is~for P/Pcrit51!

g5 i&
k8

xR
. ~74!

From Eq.~50! the short-wavelength spatial-temporal gain

eVres5expF S 2
P

Pcrit

1

xR
2 D 1/3

c1/3t2/3
)

2 G , ~75!

which is again exactly 21/3 times the hosing result. From Eq
~55!, the long-wavelength comoving gain is~for P/Pcrit51
explicitly!,

eVwsm5expF& v

xR
tG . ~76!

As noted earlier, this is a regime which is the whole be
analog to relativistic self-phase modulation.
rt-
-

-

l

t

e-

y

r

e

We close this section by making connection to the ori
nal work of Esareyet al. @7#. If we apply the general equa
tions for the short-wavelength regime, Eqs.~41! and~42!, to
the symmetric spot-size self-modulation instability, a
solve Eq.~42! for w̄f , we can substitute the solution into E
~41!. This gives (]t

21G1)w̄a5 i (G2G3/2)*2`
c dc8w̄a , which

is identical to Eq.~4! of Ref. @7#, except that hereG153
2P/Pcrit , whereas in Ref.@7#, G1542(5/2)P/Pcrit . It ap-
pears that the discrepancy is due to an algebraic error in
@7#.

E. Antisymmetric envelope self-modulation

We now look at the antisymmetric envelope se
modulation instability in more detail. The linearized equ
tions for this instability are given in Eqs.~31! and ~32!.
These equations show that the instability is driven due t
direct feedback between the spot sizes ofa andf, whereas
the symmetric spot size instability is driven due to a fee
back betweenF1 andwa , with wf uninvolved in the feed-
back mechanism. This implies that these two instabilities
physically very different. The fact that the magnitude of t
longitudinal plasma oscillation couples to the symmet
spot-size modulation implies that this type of modulation c
couple directly to Raman forward scattering~if the disper-
sive cross term was included!. In fact, when the dispersive
term is included in the analysis, the symmetric instabil
becomes coupled to modulations to the power, which le
to the formation of a separate branch on the dispersion r
tion. The asymmetric instability occurs without coupling d
rectly to the magnitude ofF. It is due to a direct coupling
between the side scattering of the plasma wake and the
scattering of the laser field, and is a fundamentally thr
dimensional~3D! mode. The lack of a coupling to the mag
nitude of the plasma wave hints that this process is
coupled to traditional forward Raman scattering. In fa
when the dispersive term is included into our analysis,
laser power is still conserved to first order and there is
additional branch to the dispersion relation. However,
growth rate is modified slightly indicating the presence
additional affects due to the dispersive term. More detail w
be given in a forthcoming paper.

We now apply the general stability analysis to this mo
to learn more about its properties. TheG parameters for the
antisymmetric instability are

G15
3

xR
2 , G25

1

xR
2

P

Pcrit
, G351. ~77!

From Eq.~35! we find that the dispersion relation is

k2v22
3

xR
2 v22k21

1

xR
2 S 32

P

Pcrit
D50. ~78!

A plot of this dispersion relation is shown in Fig. 3, for th
same parameters used for hosing and symmetric spot
self-modulation. Note that, for these parameters, we se
cutoff, whereas hosing and symmetric spot-size modula
posessed a long-wavelength tail for the same parame
The cutoff depends uponP/Pcrit , and is given by Eq.~38!,
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k85A12
1

3

P

Pcrit
. ~79!

When P/Pcrit→3, we obtain a long-wavelength regime.
P/Pcrit.3, we get an imaginary result, which indicates th
there is no cutoff at all, and a nonzero growth rate atk8
50. This implies that an instability due purely to relativist
mass effects, and a type of relativistic self-focusing insta
ity in which the beam focuses asymmetrically, exists at
thresholdP/Pcrit→3 @17#. In particular, this implies that if
the beam self-focuses in the regime 1,P/Pcrit,3, any small
asymmetry will damp away exponentially, whereas if t
beam self-focuses whenP/Pcrit.3, the asymmetry will grow
exponentially. The peak temporal~complex! frequency in the
short-wavelength regime is@using Eq.~37!#

gassm5S 1

2

P

Pcrit

1

xR
2 D 1/3~216) i !

2
5ghos ~80!

and is identical to the hosing result. The growth rate can t
be written

Im@g#5
)

4A3 2
S a0

k0wD 2/3

. ~81!

From Eq. ~40!, the long-wavelength laboratory frame fre
quency is~for P/Pcrit53!

g5 i)
k8

xR
. ~82!

From Eq.~50! the short-wavelength spatial-temporal gain

eVres5expF S P

Pcrit

1

xR
2 D 1/3

c1/3t2/3
)

2 G , ~83!

which is again identical to the hosing result. From Eq.~55!,
the long-wavelength comoving gain is~for P/Pcrit53 explic-
itly !

eVwsm5expF) v

xR
tG . ~84!

V. VARIATIONAL PRINCIPLES, MOMENT METHODS,
AND THE SOURCE-DEPENDENT EXPANSION

In this section we comment on the similarities and diffe
ences between the variational, moment, and SDE meth
We begin by examining the variational procedure, with
eye toward a comparison to the other methods. Conside
action integral

S@f i~c,t,x'!#5*dc dt d2x'L, ~85!

which is a functional of a set of fieldsf i(c,t,x'). The
equations of motion of the system are generated us
Hamilton’s principle—that independent variations of the a
tion with respect to the dependent field variables vanishe
first order. Formally, the first variation of the action may
written ~using the functional derivative notation of Killing
beck and Cole@19#!:
t

l-
e

n

-
s.

n
he

g
-
to

dS5*dc dt d2x'(
i

S dS

df i
df i D50 ~86!

which, by the fundamental lemma of the calculus of var
tions, requires that the first functional derivative ofS be
equal to 0. This requirement generates the equations of
tion of the system, i.e.,

dS

df i
[

]L
]f i

2] j S ]L
]~] jf i !

D50. ~87!

Now, we insert approximate trial functions into this varie
form of the action. Writing

f i'f̃ i„bk~c,t!,xW'…, ~88!

where thebk are the parameters of the trial function,~e.g.,j,
x, w, a, etc.! and the; denotes that the form off is ap-
proximate, we have

df i'(
k

]f̃ i

]bk
dbk . ~89!

Then, upon insertion of this representation into the var
form of the action, we find

dS5*dc dt(
j F *d2x'(

i S dS

df i
U

f i5f̃ i

]f̃ i

]b j~c,t!D G
3db j~c,t!

50, ~90!

which means, by the fundamental lemma of the variatio
calculus, that the equations of motion for the parameters

*d2x'(
i S dS

df i
U

f i5f̃ i

]f̃ i

]b j
D 50, ~91!

where the trial functions have been inserted into the origi
equations of motion, denoted bydS/df i . Note that each
term in the sum appearing in Eq.~91! is not necessarily 0
anymore, since the trial function is no longer an exact so
tion. If a sum over a complete set of functions were chos
as the trial function, we would have an exact representat
and each term in the sum would equal 0. Note that we h
one equation for each parameter, and thus have a clo
system of equations.

Equation~91! provides a useful calculational tool, and ca
be applied directly to any system of partial differential equ
tions at the level of the equations of motion, without kno
ing the particular Lagrangian~provided that one exists! if
one knows which equations result from functionally diffe
entiating the action with respect to which dependent va
ables. In the particular case that no Lagrangian can be fo
for the specific set of equations, Eq.~91! still suggests a
general procedure for generating envelope equations. W
an action principle does not exist, it isusuallydue to a few
offending terms in certain equations, for which there a
no ‘‘Frechet symmetric’’ terms@28,29# in the other equations
that would allow for the formulation of a varia
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tional principle. Nevertheless, one has in mind what the
grangian would be if those extra terms were present,
thereby also knows which equations would be produced
to variations of the action with respect to which depend
variables. In these situations, Eq.~91! implies the following
procedure for generating envelope equations: tempora
add in whatever terms are needed to the system of equa
so that it is clear which equation is obtained by varying
particular variable, but drop those extra terms just bef
substituting the trial functions into Eq.~91!. A very general
exposition on the formulation of variational principles
given in Refs.@29,30#.

With the variational method expressed in the form of E
~91!, we can make a direct comparison between the va
tional method, the moment method, and the sour
dependent expansion. All of these methods require subst
ing trial functions into linear combinations of the equatio
of motion, which are then multiplied by linear combinatio
of the trial functions in some way, and then integrated o
the transverse coordinates. This is exactly the form we h
here as well. For a Gaussian trial function, it is easy to
that the methods are equivalent. In cylindrical coordina
each method involves multiplying the equations by a Gau
ian times even powers ofr 2, and integrating over the trans
verse coordinates. For the moment method, this is simp
definition of the moment. For the variational method, th
comes from differentiating the trial function with respect
a or w, whereas in the SDE, the multiplying factor is simp
represented by the Laguerre polynomials.

For the nonlinear Schrodinger equation, the equivale
of the moment method and the variational method for
lowest order Gaussian mode was shown by Anderson
Bonnedal@13#. It can be shown that for the case of the no
linear Schrodinger equation, the variational method and
source-dependent expansion are exactly equivalent for a
bitrary number of Hermite-Gaussian modes. However,
envelope equations generated by each method are not
tical, but are linear combinations of each other.

The complete equivalence is not as clear when the mo
equations are coupled partial differential equations, rat
than a single equation, such as the nonlinear Schrodin
equation. However, the linearized results obtained in this
per for our system of two equations and very specific t
functions agree with results obtained using the sour
dependent expansion@7,11#. It is worth noting that Esarey
et al. did not use a trial function forf, but solved Eq.~6!
exactly in terms ofuau2/4.

We close this section by commenting on the work of S
vets and Wurtele@12#. In this work they considered pulse
propagating in plasma channels in which the beam
matched, i.e., the spot size does not evolve. They expan
the laser in terms of Laguerre-Gaussian modes. In this c
no centroid position was explicitly included in the Gaussia
Therefore, hosing manifests itself as the growth of
higher-order azimuthally asymmetric Laguerre modes. T
approach could be recovered from the variational metho
the same modal expansion was used in the trial function.
have also recovered this result using the moment met
with Hermite Gaussian modes. We comment that in Ref.@12#
the relativistic mass corrections were neglected. As a re
their final dispersion relation does not give any lon
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wavelength regime which again shows the distinction
tween the long- and short-wavelength regimes.

VI. SUMMARY

In summary, we have developed a variational appro
for studying the evolution of short-pulse laser-plasma int
actions. This approach yields coupled envelope equations
macroscopic parameters which describe the laser and
plasma potential. In this paper we have dropped terms a
ing from dispersion, and concentrated on the linearized v
sion of the resulting equations. The resulting stability ana
sis predicts three types of whole beam instabilities. In
first, the centroid of the laser couples to the centroid of
plasma potential, i.e., hosing. In the second, the average
size of the laser is coupled to the amplitude of the plas
potential, i.e., symmetric spot-size self-modulation. In t
third, the asymmetry of the laser’s spot sizes couples to
asymmetry of the plasma potential’s spot sizes, i.e., as
metric spot-size self-modulation. Each of these instabilit
has two basic regimes: a short-wavelength regime an
long-wavelength regime. In the short-wavelength regime,
plasma potential is dominated by the plasma wave wake
oscillates nearvp . These are the whole beam analogs
RFS @4,5#. The RFS regimes of hosing and symmetric sp
size self-modulation had been previously predicted. T
variational calculations also predict a new asymmetric sp
size self-modulation instability. In the long-wavelength r
gime, the modulations to the plasma potential are domina
by the relativistic mass corrections, i.e., the ponderomo
potential. These regimes are the whole beam analogs to
tivistic self-phase modulation~RSPM! and are distinct from
the RFS regimes in the same way that RSPM is distinct fr
RFS.

There are many directions for future work, the most a
parent of which is to keep the dispersive terms. Their imp
tance is already well documented. We will address how
dispersive terms modify the growth rates and introduce n
instabilities in a future publication. For laser drivers
plasma-based acceleration, it would be useful to include
terms from a plasma channel. Another area of future wor
to examine the nonlinear coupling between instabilities, e
hosing in the presence of an existing plasma wave. Yet
other is to perturb about a different equilibrium profile, e.
a beam with an elliptical cross section. For example, we h
already considered how the results change in slab geom
In this case the growth rate for hosing is reduced by a fac
of 1/&. One could also examine the effect of trial functio
with higher-order Hermite-Gaussian modes included. A
other possibility would be to study the full set of nonlinea
ties. This is possible in principle by using the Lagrangia
published by Chen and Sudan@16# or Brizaird @31#. The
main difficulty in this regard is in carrying out the transver
integrations once the form of a Gaussian-based trial func
is inserted into the action. Towards this goal, we have
ready derived a fully nonlinear Lagrangian which is am
nable to the use of trial functions. Last, we point out tha
similar variational approach could be applied to other typ
of laser-plasma interactions such as the coupled forw
Brillouin scattering and ponderomotive self-focusing ins
bility. We have recently done this successfully@32#.
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APPENDIX A: ALGEBRAIC MANIPULATIONS
IN CALCULATING THE REDUCED LAGRANGIAN

In this appendix we give algebraic details for obtaini
the reduced Lagrangian of Eq.~10!. To compute the reduce
Lagrangian from the exact Lagrangian, we first isolate in
vidual terms in the exact Lagrangian,

La'5¹W 'a•¹W 'a* ,

Lat52 ik0~a]ta* 2a* ]ta!52k0 Im@a]ta* #,

Lfc522~]cf!2,

Lf252f2,

La252aa* ,

Lc52aa* f.

Now, we proceed to insert the trial functions@Eqs. ~6! and
~7!#, and carry out the transverse integrations, term by te
in the order listed. We will use the convention that an ov
bar denotes a term of the reduced Lagrangian, to disting
it from the exact Lagrangian. Term by term, this results i
f
e
e
s
-
nt
s

i-

,
-
sh

L̄a'5E dx̃adỹaF4S x̃a
2~11ax

2!

wxa
4 1x⇒yD 1kx

21ky
2Gj

3expF22S x̃a
2

wxa
2 1

ỹa
2

wya
2 D G

5
pP

2 S kx
21ky

21
~11ax

2!

wxa
2 1

~11ay
2

wya
2 D ,

L̄at52k0E dx̃adỹaH 2]tx1Fkx]txa2
x̃a

2

wxa
2

3S ]tax22ax

]twxa

wxa
D1x⇒yG J j

3expF22S x̃a
2

wxa
2 1

ỹa
2

wya
2 D G

52pPk0H ]tx1Fwxa
2

4
]tS ax

wxa
2 D 2

kx]txa1x⇒yG J ,

L̄a25E dx̃adỹaj expF22S x̃a
2

wxa
2 1

ỹa
2

wya
2 D G5p

P

2
,

L̄c52E dx dyjF expF22S x̃a
2

wxa
2 1

ỹa
2

wya
2 1

x̃f
2

wxf
2 1

ỹf
2

wyf
2 D G .

This integral can be evaluated by completing the square
the exponent, and shifting the integration variable,
.

L̄c52

pwxfwyf FP expF22S ~xa2xf!2

~wxa
2 1wxf

2 !
1

~ya2yf!2

~wya
2 1wyf

2 ! D G
A~wxa

2 1wxf
2 !~wya

2 1wyf
2 !

,

L̄fc522E dx̃fdỹfH ~]cF!21F4]c~F2!
x̃f

2

wxf
3 ]cwxf116F2S x̃f

2

wxf
4 ~]cxf!21

x̃f
4

wxf
6 ~]cwxf!2

1
x̃f

2 ỹf
2

wxf
3 wyf

3 ~]cwxf!~]cwyf! D 1x⇒yG J F expF24S x̃f
2

wxf
2 1

ỹf
2

wyf
2 D G

52pFwxfwyf

2
~]cF!21

]c~F2!

4
]c~wxfwyf!

1F2S 3

8

wyf

wxf
~]cwxf!21

~]cwxf!~]cwyf!

8
1

wyf

wxf
~]cxf!21x⇒yD G ,

L̄f25E dx̃fdỹfF2 expF22S x̃f
2

wxf
2 1

ỹf
2

wyf
2 D G5p@~F2wxfwyf!/2#.

In the above, the symbolx⇒y indicates an identical expression with the variablex replaced withy, including the subscripts
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APPENDIX B: NONLINEAR EQUATIONS OF MOTION

In this appendix we give the full set of nonlinear envelope equations obtained by varying the Lagrangian density
~12!. These are as follows: for,dwxa ,

k0
2

2
]t

2wxa2
2

wxa
3 1

Fwxfwyfwxa@~wxa
2 1wxf

2 !24~xa2xf!2#

~wxa
2 1wxf

2 !5/2~wya
2 1wyf

2 !1/2 expF22S ~xa2xf!2

~wxa
2 1wxf

2 !
1

~ya2yf!2

~wya
2 1wyf

2 ! D G50,

for dwya ,

k0
2

2
]t

2wya2
2

wya
3 1

Fwxfwyfwya@~wya
2 1wyf

2 !24~ya2yf!2#

~wya
2 1wyf

2 !5/2~wxa
2 1wxf

2 !1/2 expF22S ~xa2xf!2

~wxa
2 1wxf

2 !
1

~ya2yf!2

~wya
2 1wyf

2 ! D G50,

for dwxf ,

~]cF!22
1

2
]c

2~F2!2
1

2wyf
]c~F2]cwyf!2

3

2wyfwyf
]c~F2 wyf ]cwxf!1

3

4
F2S ~]cwxf!2

wxf
2 1

~]cwyf!2

wyf
2 D

12F2S 2
~]cxf!2

wxf
2 1

~]cyf!2

wyf
2 D 2F21

PF@wxa
2 ~wxa

2 1wxf
2 !14wxf

2 ~xa2xf!2#expF22S ~xa2xf!2

~wxa
2 1wxf

2 !
1

~ya2yf!2

~wya
2 1wyf

2 ! D G
~wya

2 1wyf
2 !1/2~wxa

2 1wxf
2 !5/2

50,

for dwyf ,

~]cF!22
1

2
]c

2~F2!2
1

2wxf
]c~F2]cwxf!2

3

2wxfwyf
]c~F2 wxf ]cwyf!1

3

4
F2S ~]cwxf!2

wxf
2 1

~]cwyf!2

wyf
2 D

12F2S ~]cxf!2

wxf
2 2

~]cyf!2

wyf
2 D 2F21

PF@wya
2 ~wya

2 1wyf
2 !14wyf

2 ~ya2yf!2#expF22S ~xa2xf!2

~wxa
2 1wxf

2 !
1

~ya2yf!2

~wya
2 1wyf

2 ! D G
~wxa

2 1wxf
2 !1/2~wya

2 1wyf
2 !5/2

50,

for dF,

]c~wxfwyf]cF!

wxfwyf
1

F]c
2~wxfwyf!

2wxfwyf
2

F~]cwxf!~]cwyf!

2wxfwyf
2

3F

4 S ~]cwxf!2

wxf
2 1

~]cwyf!2

wyf
2 D 22FS ~]cxf!2

wxf
2 1

~]cyf!2

wyf
2 D 1F

2

P expF22S ~xa2xf!2

~wxa
2 1wxf

2 !
1

~ya2yf!2

~wya
2 1wyf

2 ! D G
2~wxa

2 1wxf
2 !1/2~wya

2 1wyf
2 !1/2 50,

for dxa ,

k0
2]t

2xa1

2wxfwyfF~xa2xf!expF22S ~xa2xf!2

~wxa
2 1wxf

2 !
1

~ya2yf!2

~wya
2 1wyf

2 ! D G
~wxa

2 1wxf
2 !3/2~wya

2 1wyf
2 !1/2 50,

for dya ,

k0
2]t

2ya1

2wxfwyfF~ya2yf!expF22S ~xa2xf!2

~wxa
2 1wxf

2 !
1

~ya2yf!2

~wya
2 1wyf

2 ! D G
~wya

2 1wyf
2 !3/2~wxa

2 1wxf
2 !1/2 50,

for dxf ,
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]cS F2
wyf

wxf
]cxfD2

wxfwyfPF~xa2xf!expF22S ~xa2xf!2

~wxa
2 1wxf

2 !
1

~ya2yf!2

~wya
2 1wyf

2 ! D G
~wxa

2 1wxf
2 !3/2~wya

2 1wyf
2 !1/2 50,

for dyf ,

]cS F2
wxf

wyf
]cyfD2

wxfwyfPF~ya2yf!expF22S ~xa2xf!2

~wxa
2 1wxf

2 !
1

~ya2yf!2

~wya
2 1wyf

2 ! D G
~wya

2 1wyf
2 !3/2~wxa

2 1wxf
2 !1/2 50,

APPENDIX C: THE QUADRATIC LAGRANGIAN

In this appendix we give the details for obtaining the quadratic Lagrangian. This is done by expanding the r
Lagrangian in Eq.~10! about the zeroth order equilibrium solution. We make the perturbation substitutions

F5
P

4w0
2 1«F1 ,

wxa5w01«wxa1 , wya5w01«wya1 , wxf5w01«wxf1 , wyf5w01«wyf1 ,

xa5«xa1 , ya5«ya1 , xf5«xf1 , yf5«yf1 .

and Taylor expand the Lagrangian to second order ine. Collecting the second-order terms, we have,

L̄252
16P̃

w0
4 ~k0

2w0
4@~]txa1!21~]tya1!2#14P̃@~]cxf1!21~]cyf1!2#24P@~xa12xf1!21~ya12yf1!2# !2

w0
2

2
@~]cF1!22F1

2#

2
4P̃

w0
@~]cwxf11]cwyf1!]cF12~wxa11wya11wxf11wyf1!F1#2

4P̃

w0
4 $k0

2w0
4@~]twxa1!21~]twya1!2#

22~62 P̃!@wxa1
2 1wya1

2 #14P̃wxa1wya1%2
8P̃2

w0
4 $3@~]cwxf1!21~]cwyf1!22wxf1

2 2wyf1
2 #

12@~]cwxf1!~]cwyf1!2wxf1wyf1#%2
16P̃2

w0
4 ~wxa12wyal!~wxf12wyf1!.

Then, making a change of variables to

w̄a[
wxa11wya1

2
, w̄f[

wxf11wyf1

2
,

Dwa[
wxa12wya1

2
, Dwf[

wxf12wyaf1

2
,

we can write the quadratic Lagrangian as

LF252
16P̃

w0
4 „k0

2w0
4@~]txa1!21~]tya1!2#14P̃@~]cxf1!21~]cyf1!2#24P̃@~xa12xf1!21~ya12yf1!2#…

2
w0

2

2
@~]cF1!22F1

2#2
8P̃

w0
@~]cw̄f!]cF12~w̄a1w̄f!F1#2

32P̃

w0
4 $xR

2~]tw̄a!22~32 P̃!w̄a
212P̃@~]cw̄f!22w̄f

2 #%

2
32P̃

w0
4 $xR

2~]tDwa!223Dwa
21 P̃@~]cDwf!22Dwf

2 12DwfDwa#%,

wherexR5k0w0
2/2, P̃[P/Pcrit . This can then broken up into individual pieces, as is done in Eq.~17!–~20!.
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